Change search
ReferencesLink to record
Permanent link

Direct link
Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices
KTH, School of Electrical Engineering (EES), Microsystem Technology.
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, no 20, 205406- p.Article in journal (Refereed) Published
Abstract [en]

Thermal boundary resistance (TBR) between a single-walled carbon nanotube (SWNT) and matrices of solid and liquid argon was investigated by performing classical molecular-dynamics simulations. Thermal boundary conductance (TBC), i.e., inverse of TBR, was quantified for a range of nanotube lengths by applying a picosecond heat pulse to the SWNT and observing the relaxation. The SWNT-length effect on the TBC was confirmed to be absent for SWNT lengths from 20 to 500 A. The heat transfer mechanism was studied in detail and phonon spectrum analysis provided evidence that the resonant coupling between the low-frequency modes of the SWNT and the argon matrix is present both in solid and liquid argon cases. The heat transfer mechanism was qualitatively analyzed by calculating the spectral temperature of the SWNT in different frequency regimes. It was found that the low-frequency modes that are resonantly coupled to the argon matrix relaxes roughly ten times faster than the overall TBC time scale, depending on the surrounding matrix. However, such resonant coupling was found to transfer little energy despite a popular picture of the linear transfer path. The analysis suggests that intrananotube energy transfer from high-frequency modes to low-frequency ones is slower than the interfacial heat transfer to the argon matrix.

Place, publisher, year, edition, pages
2008. Vol. 78, no 20, 205406- p.
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-33154DOI: 10.1103/PhysRevB.78.205406ISI: 000261215400071ScopusID: 2-s2.0-56349130781OAI: diva2:413702
QC 20110429Available from: 2011-04-29 Created: 2011-04-29 Last updated: 2011-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Carlborg, Carl Fredrik
By organisation
Microsystem Technology
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 42 hits
ReferencesLink to record
Permanent link

Direct link