Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distribution of metal droplets in top slags during ladle treatment
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
2008 (English)In: Ironmaking & steelmaking, ISSN 0301-9233, E-ISSN 1743-2812, Vol. 35, no 8, 575-588 p.Article in journal (Refereed) Published
Abstract [en]

The investigation focused on the mixing of the metal and slag phases during ladle refining from the point of tapping the EAF to casting. Steel droplet distributions were determined for slag samples taken at different stages in the ladle refining process at two different steel plants in Sweden. The droplet distributions were determined using light optical microscopy and classification according to the standard SS111116. Sample analysis results showed the slag samples taken before vacuum degassing to contain the greatest concentration of steel droplets. The total interfacial area between the steel droplets and slag was determined to be 3-14 times larger than the projected flat interfacial area between the steel and slag. The effects of slag viscosity and reactions between steel and slag on metal droplet formation in slag were also considered.

Place, publisher, year, edition, pages
2008. Vol. 35, no 8, 575-588 p.
Keyword [en]
Metal droplets, Slag, Ladle, Refining, Distribution
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-33169DOI: 10.1179/174328108X318914ISI: 000261735800003Scopus ID: 2-s2.0-55849142233OAI: oai:DiVA.org:kth-33169DiVA: diva2:413973
Note
QC 20110502Available from: 2011-05-02 Created: 2011-04-29 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Slag/Metal Metallurgy in Iron and Steel Melts
Open this publication in new window or tab >>Slag/Metal Metallurgy in Iron and Steel Melts
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this work, the metal and slag phase mixing in three steps of a ladle refining operation of steel melts and for an oxygen balance during cooling of cast iron melts have been studied at two Swedish steel plants and at two Swedish cast iron foundries, respectively. In order to predict the oxygen activity in the steel bulk in equilibrium with the top slag as well as in metal droplets in the top slag in equilibrium with the top slag, three slag models were used. In addition, the assumptions of a sulphur-oxygen equilibrium between steel and slag and the dilute solution model for the liquid steel phase were utilized in the calculations. Measured oxygen activities in steel bulk, which varied between 3.5-6 ppm, were compared to predicted oxygen activities. The differences between the predicted and measured oxygen activities were found to be significant (0-500%) and the reasons for the differences are discussed in the thesis. Slag samples have been evaluated to determine the distribution of the metal droplets. The results show that the relatively largest numbers of metal droplets are present in the slag samples taken before vacuum degassing. Also, the projected interfacial area between steel bulk and top slag has been compared to the interfacial area between the metal droplets and slag.

The results show that the droplet-slag interfacial area is 3 to 14 times larger than the flat projected interfacial area between the steel and top slag. Furthermore, the effect of the reactions between top slag and steel and the slag viscosity on the metal droplet formation is discussed. The results show significant differences between the steel bulk and steel droplet compositions and the reasons for the differences are discussed in the thesis. The oxygen activity in different cast irons was studied. Plant trials were performed at three occasions for lamellar, compacted and nodular iron melts. The results show that at temperatures close to the liquidus temperature the oxygen activities were 0.03-0.1 ppm for LGI, around 0.02 ppm for CGI, and 0.001ppm for SGI. In addition, it was found that as the oxygen activities increased with time after an Mg treatment, the ability to form a compact graphite or a nodular graphite in Mg-treated iron melts was decreased. Also, extrapolated oxygen activity differences up to 0.07 ppm were found for different hypoeutectic iron compositions for lamellar graphite iron at the liquidus temperature. Overall, the observed differences in the dissolved oxygen levels were believed to influence how graphite particles are incorporated into the austenite matrix and how the graphite morphology will be in the cast product.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 36 p.
Keyword
austenit, syreaktivitet, slagg, fördelning, primär dendrit, metalldroppar, lamellär grafit, svavel, kompaktgrafit, skänk, nodulär grafit, raffinering
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-187228 (URN)978-91-7595-940-5 (ISBN)
Public defence
2016-06-07, B2, Brinellvägen 23, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20160518

Available from: 2016-05-18 Created: 2016-05-18 Last updated: 2016-05-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Andersson, Margareta A.T.Jönsson, Pär G.
By organisation
Applied Process Metallurgy
In the same journal
Ironmaking & steelmaking
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf