Change search
ReferencesLink to record
Permanent link

Direct link
Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
Show others and affiliations
2011 (English)In: Journal of Biomedical Materials Research. Part A, ISSN 1549-3296, Vol. 96A, no 2, 349-357 p.Article in journal (Refereed) Published
Abstract [en]

Our recent in vitro study demonstrated that endothelial cells (ECs) might influence the differentiation of bone marrow stromal cells (BMSCs). Therefore, the aim of this study was to describe this effect in vivo, using a rat calvarial bone defect model. BMSCs were isolated from femurs of two-donor Lewis rats and expanded in alpha-minimum essential medium containing 10% fetal bovine serum. One fifth of BMSCs were induced and differentiated into ECs in an Endothelial Cell Growth Medium-2 and then characterized by a flow cytometry. The remaining BMSCs were cultured in freshly prepared osteogenic stimulatory medium, containing dexamethasone, ascorbic acid and beta-glycerophosphate. Either BMSCs alone (BMSC-group) or co-cultured ECs/BMSCs (CO-group) were seeded into poly(L-lactide-co-1,5-dioxepan-2-one) [poly(LLA-co-DXO)] scaffolds, cultured in spinner flasks, and then implanted into symmetrical calvarial defects prepared in recipient rats. The animals were sacrificed after 2 months. The formation of new bone was evaluated by radiography and histology and by the expression of osteogenic markers using reverse transcriptase-polymerized chain reaction (RT-PCR). To investigate vessel formation, histological staining was performed with EC's markers. The radiographical and histological results showed more rapid bone formation in the CO-than in the BMSC-group. However, the expression of EC's marker was similar on both groups by histological analysis after 2 months postoperatively. Furthermore, the CO-group exhibited greater expression of osteogenic markers as demonstrated by RT-PCR. The results are consistent with the previous in vitro findings that poly(LLA-co-DXO) scaffold might be suitable candidate for bone tissue engineering. In vivo, bone regeneration was enhanced by a construct of the polymer scaffold loaded with co-cultured cells.

Place, publisher, year, edition, pages
2011. Vol. 96A, no 2, 349-357 p.
Keyword [sv]
Tissue-Engineered Bone, Rat Cranial Defects, Marrow Stromal Cells, Growth-Factor, Osteogenic Differentiation, Biodegradable Polymers, Human Osteoprogenitors, Copolymers, 1, 5-Dioxepan-2-One, Vegf
National Category
Paper, Pulp and Fiber Technology
URN: urn:nbn:se:kth:diva-28906DOI: 10.1002/jbm.a.32989ISI: 000285428700009ScopusID: 2-s2.0-78650472917OAI: diva2:414111
QC 20110501Available from: 2011-05-02 Created: 2011-01-24 Last updated: 2011-11-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dånmark, StaffanFinne Wistrand, AnnaAlbertsson, Ann-Christine
By organisation
Fibre and Polymer Technology
In the same journal
Journal of Biomedical Materials Research. Part A
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link