Change search
ReferencesLink to record
Permanent link

Direct link
Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0002-4431-0671
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
2011 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 0019-4686, Vol. 56, no 3, 1636-1645 p.Article in journal (Refereed) Published
Abstract [en]

Adsorption of mussel adhesive protein (Mefp-1) derived from the marine mussel Mytilus edulis and its corrosion inhibition for carbon steel were studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in NaCl solutions at 01 4.6. The results indicate that the Mefp-1 confers significant corrosion inhibition of carbon steel, and the chloride concentration of the solution has an influence on the inhibition efficiency. Within a short exposure time, the inhibition efficiency is higher in the solution with a higher chloride concentration, whereas, for longer exposure time, up to one week, higher inhibition efficiency was obtained in the solution with a lower chloride concentration. AFM imaging was used both ex situ and in situ to investigate Mefp-1 adsorption. The in situ AFM measurements enable the protein adsorption on carbon steel to be visualized in real time in the solution. The AFM images illustrate how the Mefp-1 layer is formed on carbon steel. Measurements using bovine serum albumin (BSA) were also performed for comparison. The results showed that BSA also confers significant corrosion inhibition of carbon steel even though the BSA film formation process is slightly different from that of Mefp-1.

Place, publisher, year, edition, pages
2011. Vol. 56, no 3, 1636-1645 p.
Keyword [en]
Mussel adhesive protein, Protein adsorption, Corrosion inhibition, Carbon steel, In situ AFM
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-33238DOI: 10.1016/j.electacta.2010.10.033ISI: 000289225400087ScopusID: 2-s2.0-78650513128OAI: diva2:415687

QC 20110509

Available from: 2011-05-09 Created: 2011-05-02 Last updated: 2013-09-11Bibliographically approved
In thesis
1. The Mussel Adhesive Protein (Mefp-1): A GREEN Corrosion Inhibitor
Open this publication in new window or tab >>The Mussel Adhesive Protein (Mefp-1): A GREEN Corrosion Inhibitor
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Corrosion of metallic materials is a natural process, and our study shows that even in an alkaline environment severe corrosion may occur on a carbon steel surface. While corrosion cannot be stopped it can be retarded. Many of the traditional anti-corrosion approaches such as the chromate process are effective but hazardous to the environment and human health.

Mefp-1, a protein derived from blue mussel byssus, is well known for its extraordinary adhesion and film forming properties. Moreover, it has been reported that Mefp-1 confers a certain corrosion protection for stainless steel. All these facts indicate that this protein may be developed into corrosion inhibitors with ‘green’, ‘effective’ and ‘smart’ properties.

In this study, a range of surface-sensitive techniques have been used to investigate adsorption kinetics, film forming and film compaction mechanisms of Mefp-1. In situ atomic force microscopy (AFM) enables the protein adsorption on substrates to be visualized, whereas the ex situ AFM facilitates the characterization of micro- and nano-structures of the protein films. In situ Peak Force AFM can be used to determine nano-mechanical properties of the surface layers. The quartz crystal microbalance with dissipation monitoring (QCM-D) was used to reveal the build-up of the Mefp-1 film on substrates and measure the viscoelastic properties of the adsorbed film. Analytical techniques and theoretical calculations were applied to gain insights into the formation and compaction processes such as oxidation and complexation of pre-formed Mefp-1 films. The electron probe micro analyzer (EPMA) and X-ray photoelectron spectroscopy (XPS) were utilized to obtain the chemical composition of the surface layer. Electrochemical impedance spectroscopy (EIS) measurements were performed to evaluate the corrosion inhibition efficiency of different forms of Mefp-1 on carbon steel substrates.

The results demonstrate that Mefp-1 adsorbs on carbon steel surfaces across a broad pH interval, and it forms a continuous film covering the substrate providing a certain extent of corrosion protection. At a higher pH, the adsorption is faster and the formed film is more compact. At neutral pH, results on the iron substrate suggest an initially fast adsorption, with the molecules oriented preferentially parallel to the surface, followed by a structural change within the film leading to molecules extending towards solution. Both oxidation and complexation of the Mefp-1 can lead to the compaction of the protein films. Addition of Fe3+ induces a transition from an extended and soft protein layer to a denser and stiffer one by enhancing the formation of tri-Fe3+/catechol complexes in the surface film, leading to water removal and film compaction. Exposure to a NaIO4 solution results in the cross-linking of Mefp-1, which also results in a significant compaction of the pre-formed protein film. Mefp-1 is an effective corrosion inhibitor for carbon steel when added to an acidic solution, and the inhibition efficiency increases with time. As a film-forming corrosion inhibitor, the pre-formed Mefp-1 film provides a certain level of corrosion protection for short term applications, and the protection efficiency can be significantly enhanced by the film compaction processes.

For the long term applications, a thin film composed of Mefp-1 and ceria nanoparticles was developed. The deposited Mefp-1/ceria composite film contains micro-sized aggregates of Mefp-1/Fe3+ complexes and CeO2 particles. The Mefp-1/ceria film may promote the further oxidation of ferrous oxides, and the corrosion resistance increases with time. Moreover, phosphate ions react with Fe ions released from the surface and form deposits preferentially at the surface defect sites. The deposits incorporate into the Mefp-1/ceria composite film and heal the surface defects, which result in a significantly improved corrosion inhibition effect for the Mefp-1/ceria composite film in both initial and prolonged exposure situations

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. x, 62 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2013:21
carbon steel, mussel adhesive protein, Mefp-1, inhibitor, adsorption, film forming, complexation, cross-linking, ceria nanoparticle, composite film, EIS, AFM, QCM-D, ATR-FTIR, Confocal Raman Micro-spectroscopy, DFT calculation
National Category
Chemical Sciences
urn:nbn:se:kth:diva-123489 (URN)978-91-7501-738-9 (ISBN)
Public defence
2013-06-13, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20130610

Available from: 2013-06-10 Created: 2013-06-10 Last updated: 2013-09-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhang, FanPan, JinshanClaesson, Per Martin
By organisation
Surface and Corrosion Science
In the same journal
Electrochimica Acta
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 76 hits
ReferencesLink to record
Permanent link

Direct link