Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparation and characterization of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolyte for low-temperature solid oxide fuel cells
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
Show others and affiliations
2011 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 36, no 6, 3984-3988 p.Article in journal (Refereed) Published
Abstract [en]

Sm0.2Ce0.8O1.9 (SDC)/Na2CO3 nanocomposite synthesized by the co-precipitation process has been investigated for the potential electrolyte application in low-temperature solid oxide fuel cells (SOFCs). The conduction mechanism of the SDC/Na2CO3 nanocomposite has been studied. The performance of 20 mW cm(-2) at 490 degrees C for fuel cell using Na2CO3 as electrolyte has been obtained and the proton conduction mechanism has been proposed. This communication demonstrates the feasibility of direct utilization of methanol in low-temperature SOFCs with the SDC/Na2CO3 nanocomposite electrolyte. A fairly high peak power density of 512 mW cm(-2) at 550 degrees C for fuel cell fueled by methanol has been achieved. Thermodynamical equilibrium composition for the mixture of steam/methanol has been calculated, and no presence of C is predicted over the entire temperature range. The long-term stability test of open circuit voltage (OCV) indicates the SDC/Na2CO3 nanocomposite electrolyte can keep stable and no visual carbon deposition has been observed over the anode surface. Copyright (C) 2011, Hydrogen Energy Publications, LLC.

Place, publisher, year, edition, pages
2011. Vol. 36, no 6, 3984-3988 p.
Keyword [en]
Solid oxide fuel cells, Nanocomposite, Conductivity, Proton conduction, Sodium carbonate
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-33229DOI: 10.1016/j.ijhydene.2010.12.061ISI: 000289331800022Scopus ID: 2-s2.0-79952440269OAI: oai:DiVA.org:kth-33229DiVA: diva2:415816
Available from: 2011-05-09 Created: 2011-05-02 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Raza, RizwanZhu, Bin
By organisation
Heat and Power Technology
In the same journal
International journal of hydrogen energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 64 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf