Change search
ReferencesLink to record
Permanent link

Direct link
Property tailoring of phenol-formaldehyde matrices by control of reactant molar ratio and thermoplastic modification
Show others and affiliations
2011 (English)In: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 60, no 5, 851-858 p.Article in journal (Refereed) Published
Abstract [en]

High modulus, strength and thermal stability make phenol-formaldehyde resins (PFRs) interesting as matrices for nanocomposites. Four PFR matrices synthesized with different formaldehyde (F) to phenol (P) molar ratios were investigated, as well as the influence of thermoplastic modification on their mechanical properties. The effectiveness of a specific curing cycle for obtaining macrovoid- and microvoid-free specimens by controlling the thickness of samples is demonstrated. Fourier transform infrared spectroscopy results reveal that F content increases the presence of oxidized linkages as benzophenones and fully substituted aromatic structures. PFR matrices with highest F content present the highest values of main transition temperature and flexural modulus up to an F/P ratio of 1.8, revealing the achievement of a densely crosslinked and rigid structure. A selected PFR matrix was modified with 5, 10 and 15 wt% of two poly(vinyl butyral) (PVB) thermoplastics of differing molecular weight. Phase separation occurs before gelation in all cases leading to different morphologies, observed using atomic force microscopy and optical microscopy, depending on PVB content: PVB-rich particles in PFR-richmatrix for 5 wt% and co-continuous dual morphology for 10 and 15 wt% for both PVBs. Strength improvement is achieved for PFR matrices modified with 5 wt% of PVB associated with a tailored particulate morphology with a particle size of around 1.2 mu m. Finally, 5 and 10 wt% PVB-modified PFR materials exhibit a very high thermal stability with degradation temperatures very close to those for neat PFR matrix.

Place, publisher, year, edition, pages
2011. Vol. 60, no 5, 851-858 p.
Keyword [en]
phenolic resin, mechanical properties, phase separation, thermoplastic, morphology
National Category
Paper, Pulp and Fiber Technology
URN: urn:nbn:se:kth:diva-33208DOI: 10.1002/pi.3032ISI: 000289516300020ScopusID: 2-s2.0-79953861156OAI: diva2:418106
QC 20110519Available from: 2011-05-19 Created: 2011-05-02 Last updated: 2012-03-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Berglund, Lars A.
By organisation
Wallenberg Wood Science Center
In the same journal
Polymer international
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 64 hits
ReferencesLink to record
Permanent link

Direct link