Change search
ReferencesLink to record
Permanent link

Direct link
Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.ORCID iD: 0000-0002-3368-9786
2011 (English)In: Journal of optics, ISSN 0150-536X, Vol. 13, no 7, 075002- p.Article in journal (Refereed) Published
Abstract [en]

Multimode interference power splitters based on hybrid plasmonic waveguides are investigated theoretically. Balanced power splitting is achieved in designed 1 × 3 and 1 × 2 power splitters between a silicon-on-insulator waveguide and several hybrid plasmonic waveguides, with total transmission efficiencies at 76.1% and 78.3% at the wavelength of 1550 nm, respectively.

Place, publisher, year, edition, pages
2011. Vol. 13, no 7, 075002- p.
Keyword [en]
plasmonic waveguides, multimode interference, Gaussian source, misalignment
National Category
Atom and Molecular Physics and Optics
URN: urn:nbn:se:kth:diva-33876DOI: 10.1088/2040-8978/13/7/075002ISI: 000294294100002ScopusID: 2-s2.0-79960041382OAI: diva2:418244
Swedish Research Council

QC 20110520

Available from: 2011-05-20 Created: 2011-05-20 Last updated: 2012-08-23Bibliographically approved
In thesis
1. Plasmonic waveguides and resonators for optical communication applications
Open this publication in new window or tab >>Plasmonic waveguides and resonators for optical communication applications
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photonic circuits can transmit data signals in a much higher speed thanconventional electronic circuits. However, miniaturization of photonic circuitsand devices is hindered by the existence of light diffraction limit. A promisingsolution to this problem is by exploiting plasmonic systems for guiding andmanipulating signals at optical frequencies. Plasmonic devices are generallycomposed of noble metals and dielectrics, whose interfaces can confine surfaceplasmon polaritons, a hybrid wave that is free of diffraction limit. Plasmonicwaveguides and devices are serious contenders for achieving next-generationphotonic integrated circuits with a density comparable to the electronic counterpart.

This thesis addresses the design issues of passive plasmonic devices whichare critical for realization of photonic integration, including plasmonic waveguides,splitters, couplers, and resonators, investigated with both the finitedifferencetime-domain method and the finite-element method. In particularwe present, firstly, a coupler which efficiently couples light between a silicondielectric waveguide and a hybrid plasmonic (HP) waveguide. A coupling efficiencyas high as 70% is realized with a HP taper as short as 0.4μm. Theexperimental result agrees well with the numerical simulation. Secondly, wenumerically investigate and optimize the performances of 1×2 and 1×3 HPmultimode interferometers (MMIs), which split light from a silicon waveguideto multiple HP waveguides. Total transmission over 75% can be achieved inboth cases. Thirdly, we study the coupling and crosstalk issues in plasmonicwaveguide systems. Several methods for crosstalk reduction are proposed.Finally, HP nanodisk micro-cavities are designed and are numerically characterized.With a radius of 1μm, a high quality factor of 819 and a highPurcell factor of 1827 can be simultaneously achieved, which can be useful forrealizing efficient nano-lasers.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 60 p.
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2011:10
National Category
urn:nbn:se:kth:diva-33596 (URN)978-91-7501-015-1 (ISBN)
Public defence
2011-06-07, sal C1, Electrum, Kungl Tekniska Högskolan,Isafjordsgatan 26, Kista, Stockholm, 14:13 (English)
QC 20110523Available from: 2011-05-23 Created: 2011-05-11 Last updated: 2011-05-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Song, YiWang, JingYan, Min
By organisation
In the same journal
Journal of optics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 66 hits
ReferencesLink to record
Permanent link

Direct link