Change search
ReferencesLink to record
Permanent link

Direct link
On the efficiency of quantum lithography
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Quantum Electronics and Quantum Optics, QEO.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Quantum Electronics and Quantum Optics, QEO.ORCID iD: 0000-0002-2082-9583
2011 (English)In: New Journal of Physics, ISSN 1367-2630, Vol. 13, 043028- p.Article in journal (Refereed) Published
Abstract [en]

Quantum lithography promises, in principle, unlimited feature resolution, independent of wavelength. However, in the literature, at least two different theoretical descriptions of quantum lithography exist. They differ in the extent to which they predict that the photons retain spatial correlation from generation to absorption, and although both predict the same feature size, they vastly differ in predicting how efficiently a quantum lithographic pattern can be exposed. Until recently, essentially all quantum lithography experiments have been performed in such a way that it is difficult to distinguish between the two theoretical explanations. However, last year an experiment was performed that gives different outcomes for the two theories. We comment on the experiment and show that the model that fits the data unfortunately indicates that the trade-off between resolution and efficiency in quantum lithography is very unfavourable.

Place, publisher, year, edition, pages
2011. Vol. 13, 043028- p.
Keyword [en]
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-33704DOI: 10.1088/1367-2630/13/4/043028ISI: 000289994100005ScopusID: 2-s2.0-79955381508OAI: diva2:418266
Swedish Research CouncilKnut and Alice Wallenberg Foundation
QC 20110520Available from: 2011-05-20 Created: 2011-05-16 Last updated: 2011-05-24Bibliographically approved
In thesis
1. Applications and characterisation of correlations in quantum optics
Open this publication in new window or tab >>Applications and characterisation of correlations in quantum optics
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Quantum optics offers a huge variety of exciting phenomena. Many of them are still in their infancy and especially when it comes to implementing devices using these effects for more than a proof of principle demonstration still many things have to be investigated and understood. In this thesis I discuss the role of correlations in some areas of quantum optics and in some cases compare it to classical optics. Four papers form the core of the thesis.

In the first paper, I propose a new measure for entanglement. This measure is based on correlations between two states. I show, how this measure relates to another measure, the concurrence. It turns out that the measure is a bijective map of the concurrence for a pure state of two qubits. I motivate why the new measure is useful if one wants to implement it experimentally. I discuss its behaviour for the case of two qubits and show its properties when dealing with pure and with mixed states.

The second paper extends the result of the first one to the case where one has higher-dimensional states than qubits.

In the third paper I look at phase super-resolution. I show that it can be interpreted as a purely classical effect and I analyse what is needed and what is not needed to achieve it. Specifically, I show that quantum correlations in terms of entanglement is not needed to demonstrate phase super-resolution. By doing so I propose how one could achieve arbitrarily high phase super-resolution.

Finally, the last paper looks at the efficiency of quantum lithography and quantum imaging. It shows, that some basic assumptions in the original proposals of quantum lithography seems unfounded and that, as a consequence, the efficiency is poor. I give formulæ for the explicit scaling behaviour when changing the number of photons in a mode or when changing the number of pixels. The effect of the results on the future of quantum lithography is discussed as well.

Abstract [sv]

Kvantoptiken erbjuder ett stort antal spännande fenomen. Många av dem är fortfarande i sin linda och särskilt när man vill tillämpa kvantoptiska effekter snarare än att bara visa att principen fungerar så finns det många saker och ting som måste förstås och undersökas bättre. I denna avhandling ska jag diskutera vilken roll korrelationer spelar i några områden inom kvantoptik och i några fall ska jag jämföra dem med klassisk optik. Fyra vetenskapliga artiklar bildar kärnan i avhandlingen.

I det första pappret föreslår jag ett nytt sammanflätningsmått. Detta mått har sin ursprung i korrelationer mellan två tillstånd. Jag visar hur måttet förhåller sig till ett annat mått, den så kallade "concurrence". Det visar sig att måttet är en bijektiv avbildning av concurrence för rena tillstånd av två qubitar. Jag motiverar varför det nya måttet är användbart när man vill implementera det experimentellt. Jag diskuterar hur måttet beter sig för två qubitar och visar dess egenskaper för rena och blandade tillstånd.

Det andra pappret utvidgar första papprets resultat till situationer där man har tillstånd med högre dimension än qubitar.

I det tredje pappret undersöker jag superfasupplösning. Jag visar att man kan tolka detta som en rent klassisk effekt och jag undersöker vad man behöver och vad man inte behöver för att uppnå superfasupplösning. Jag visar särskilt att kvantkorrelationer genom sammanflätning inte behövs för att visa superfasupplösning. Därigenom ger jag förslag om hur man kan uppnå godtyckligt hög superfasupplösning.

Slutligen tittar jag i sista pappret på effektiviteten av kvantlitografi och kvantavbildning. Pappret visar att några grundläggande antaganden i originalförslaget till kvantlitografi verkar vara illa underbyggda och att därigenom kvantlitografins effektivitet reduceras kraftigt. Jag ger ekvationer för det exakta skalningsbeteendet när man ändrar antalet fotoner i en mod eller när man ändrar antalet pixlar. Jag diskuterar också implikationerna som det medför för kvantlitografins framtid.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xix, 86 p.
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2011:06
National Category
Other Engineering and Technologies not elsewhere specified
urn:nbn:se:kth:diva-34024 (URN)978-91-7415-979-0 (ISBN)
Public defence
2011-06-07, FB52, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
QC 20110524Available from: 2011-05-24 Created: 2011-05-23 Last updated: 2011-05-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kothe, ChristianBjörk, Gunnar
By organisation
Quantum Electronics and Quantum Optics, QEO
In the same journal
New Journal of Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link