Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient coupler between silicon waveguide and hybrid plasmonic waveguide
KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Photonics (Closed 20120101).
KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Photonics (Closed 20120101).
KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Photonics (Closed 20120101).ORCID iD: 0000-0002-3368-9786
KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Photonics (Closed 20120101).
2011 (English)In: OPTOELECTRONIC MATERIALS AND DEVICES V / [ed] oyama, F; Chuang, SL; Duan, GH; Huang, Y, 2011, Vol. 7987Conference paper, Published paper (Refereed)
Abstract [en]

We experimentally demonstrate an efficient coupler between a silicon waveguide and a hybrid plasmonic waveguide for the wavelength range 1460-1540 nm. Such compact, efficient plasmonic couplers provide a promising platform for integrated photonic circuits.

Place, publisher, year, edition, pages
2011. Vol. 7987
Series
Proceedings of SPIE, ISSN 0277-786X ; 7987
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-33881DOI: 10.1117/12.888661ISI: 000292740900010Scopus ID: 2-s2.0-79953012949OAI: oai:DiVA.org:kth-33881DiVA: diva2:418429
Conference
Conference on Optoelectronic Materials and Devices V. Shanghai, FL. DEC 08-12, 2010
Note

QC 20110523

Available from: 2011-05-23 Created: 2011-05-20 Last updated: 2017-03-24Bibliographically approved
In thesis
1. Plasmonic waveguides and resonators for optical communication applications
Open this publication in new window or tab >>Plasmonic waveguides and resonators for optical communication applications
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photonic circuits can transmit data signals in a much higher speed thanconventional electronic circuits. However, miniaturization of photonic circuitsand devices is hindered by the existence of light diffraction limit. A promisingsolution to this problem is by exploiting plasmonic systems for guiding andmanipulating signals at optical frequencies. Plasmonic devices are generallycomposed of noble metals and dielectrics, whose interfaces can confine surfaceplasmon polaritons, a hybrid wave that is free of diffraction limit. Plasmonicwaveguides and devices are serious contenders for achieving next-generationphotonic integrated circuits with a density comparable to the electronic counterpart.

This thesis addresses the design issues of passive plasmonic devices whichare critical for realization of photonic integration, including plasmonic waveguides,splitters, couplers, and resonators, investigated with both the finitedifferencetime-domain method and the finite-element method. In particularwe present, firstly, a coupler which efficiently couples light between a silicondielectric waveguide and a hybrid plasmonic (HP) waveguide. A coupling efficiencyas high as 70% is realized with a HP taper as short as 0.4μm. Theexperimental result agrees well with the numerical simulation. Secondly, wenumerically investigate and optimize the performances of 1×2 and 1×3 HPmultimode interferometers (MMIs), which split light from a silicon waveguideto multiple HP waveguides. Total transmission over 75% can be achieved inboth cases. Thirdly, we study the coupling and crosstalk issues in plasmonicwaveguide systems. Several methods for crosstalk reduction are proposed.Finally, HP nanodisk micro-cavities are designed and are numerically characterized.With a radius of 1μm, a high quality factor of 819 and a highPurcell factor of 1827 can be simultaneously achieved, which can be useful forrealizing efficient nano-lasers.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 60 p.
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2011:10
Keyword
Plasmonic
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-33596 (URN)978-91-7501-015-1 (ISBN)
Public defence
2011-06-07, sal C1, Electrum, Kungl Tekniska Högskolan,Isafjordsgatan 26, Kista, Stockholm, 14:13 (English)
Opponent
Supervisors
Note
QC 20110523Available from: 2011-05-23 Created: 2011-05-11 Last updated: 2011-05-23Bibliographically approved
2. Fabrication and Characterization of Photonic Crystals, Optical Metamaterials and Plasmonic Devices
Open this publication in new window or tab >>Fabrication and Characterization of Photonic Crystals, Optical Metamaterials and Plasmonic Devices
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 Nanophotonics is an emerging research field that deals with interaction between light and matter in a sub-micron length scale. Nanophotonic devices have found an increasing number of applications in many areas including optical communication, microscopy, sensing, and solar energy harvesting especially during the past two decades. Among all nanophotonic devices, three main areas, namely photonic crystals, optical metamaterials and plasmonic devices, gain dominant interest in the photonic society owning to their potential impacts. This thesis studies the fabrication and characterization of three types of novel devices within the above-mentioned areas. They are respectively photonic-crystal (PhC) surface-mode microcavities, optical metamaterial absorbers, and plasmonic couplers.

The devices are fabricated with modern lithography-based techniques in a clean room environment. This thesis particularly describes the critical electron-beam lithography step in detail; the relevant obstacles and corresponding solutions are addressed. Device characterizations mainly rely on two techniques: a vertical fiber coupling system and a home-made optical transmissivity/reflectivity setup. The vertical fiber coupling system is used for characterizing on-chip devices intended for photonic integrations, such as PhC surface-mode cavities and plasmonic couplers. The transmissivity/reflectivity setup is used for measuring the absorbance of metamaterial absorbers.

This thesis presents mainly three nanophotonic devices, from fabrication to characterization. First, a PhC surface-mode cavity on a SOI structure is demonstrated. Through a side-coupling scheme, a system quality-factor of 6200 and an intrinsic quality-factor of 13400 are achieved. Such a cavity can be used as ultra-compact optical filter, bio-sensor and etc. Second, an ultra-thin, wide-angle metamaterial absorber at optical frequencies is realized. Experimental results show a maximum absorption peak of 88% at the wavelength of ~1.58μm. The ultra-fast photothermal effect possessed by such noble-metal-based nanostructure can potentially be exploited for making better solar cells. Finally, we fabricated an efficient coupler that channels light from a conventional dielectric waveguide to a subwavelength plasmonic waveguides and vice versa. Such couplers can combine low-loss dielectric waveguides and lossy plasmonic components onto one single chip, making best use of the two.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 58 p.
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2011:09
Keyword
Photonic crystals, metamaterials, plasmonics
National Category
Telecommunications
Research subject
SRA - ICT
Identifiers
urn:nbn:se:kth:diva-33600 (URN)978-91-7501-014-4 (ISBN)
Public defence
2011-06-07, sal C1, Electrum, Isafjordsgatan 26, Kista, Stockholm, 14:00 (English)
Opponent
Supervisors
Note
QC 20110524Available from: 2011-05-24 Created: 2011-05-11 Last updated: 2011-05-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Yan, Min

Search in DiVA

By author/editor
Wang, JingSong, YiYan, MinQiu, Min
By organisation
Photonics (Closed 20120101)
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf