Change search
ReferencesLink to record
Permanent link

Direct link
The Activity of Barley NADPH-Dependent Thioredoxin Reductase C Is Independent of the Oligomeric State of the Protein: Tetrameric Structure Determined by Cryo-Electron Microscopy
Show others and affiliations
2011 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 50, no 18, 3713-3723 p.Article in journal (Refereed) Published
Abstract [en]

Thioredoxin and thioredoxin reductase can regulate cell metabolism through redox regulation of disulfide bridges or through removal of H2O2. These two enzymatic functions are combined in NADPH-dependent thioredoxin reductase C (NTRC), which contains an N-terminal thioredoxin reductase domain fused with a C-terminal thioredoxin domain. Rice NTRC exists in different oligomeric states, depending on the absence or presence of its NADPH cofactor. It has been suggested that the different oligomeric states may have diverse activity. Thus, the redox status of the chloroplast could influence the oligomeric state of NTRC and thereby its activity. We have characterized the oligomeric states of NTRC from barley (Hard rum vulgare L.). This also includes a structural model of the tetrameric NTRC derived from cryo-electron microscopy and single-particle reconstruction. We conclude that the tetrameric NTRC is a dimeric arrangement of two NTRC homodimers. Unlike that of rice NTRC, the quaternary structure of barley NTRC complexes is unaffected by addition of NADPH. The activity of NTRC was tested with two different enzyme assays. The N-terminal part of NTRC was tested in a thioredoxin reductase assay. A peroxide sensitive Mg-protoporphyrin IX monomethyl ester (MPE) cyclase enzyme system of the chlorophyll biosynthetic pathway was used to test the catalytic ability of both the N- and C-terminal parts of NTRC. The different oligomeric assembly states do not exhibit significantly different activities. Thus, it appears that the activities are independent of the oligomeric state of barley NTRC.

Place, publisher, year, edition, pages
2011. Vol. 50, no 18, 3713-3723 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
URN: urn:nbn:se:kth:diva-33986DOI: 10.1021/bi200058aISI: 000290056000014ScopusID: 2-s2.0-79955589109OAI: diva2:418463
QS 20110523Available from: 2011-05-23 Created: 2011-05-23 Last updated: 2012-03-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Elmlund, Dominika
By organisation
Structural Biotechnology
In the same journal
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link