Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strong A(infinity)-weights are A(infinity)-weights on metric spaces
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2011 (English)In: Revista matemática iberoamericana, ISSN 0213-2230, E-ISSN 2235-0616, Vol. 27, no 1, 335-354 p.Article in journal (Refereed) Published
Abstract [en]

We prove that every strong A(infinity)-weight is a Muckenhoupt weight in Ahlfors-regular metric measure spaces that support a Poincare inequality. We also explore the relations between various definitions for A(infinity)-weights in this setting, since some of these characterizations are needed in the proof of the main result.

Place, publisher, year, edition, pages
2011. Vol. 27, no 1, 335-354 p.
Keyword [en]
Metric doubling measure, metric spaces, Muckenhoupt weights, strong A(infinity)-weight
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-33692ISI: 000289926100010Scopus ID: 2-s2.0-84861906944OAI: oai:DiVA.org:kth-33692DiVA: diva2:418734
Note

QC 20140905

Available from: 2011-05-24 Created: 2011-05-16 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Kansanen, Outi Elina
By organisation
Mathematics (Dept.)
In the same journal
Revista matemática iberoamericana
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf