Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Next Generation Cost Effective Phase Change Materials: TUD Action COST-STSM-TU0802-05255
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Thermal Energy Storage, Energy Technology)ORCID iD: 0000-0001-6982-2879
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Thermal Energy Storage, Energy Technology)ORCID iD: 0000-0001-9556-552X
2009 (English)Report (Other academic)
Place, publisher, year, edition, pages
European Cooperation in Science and Technology , 2009. , iii, 11 p.
Keyword [en]
PCM, TES, Free Cooling
National Category
Energy Engineering
Research subject
SRA - Energy
Identifiers
URN: urn:nbn:se:kth:diva-34052OAI: oai:DiVA.org:kth-34052DiVA: diva2:418929
Projects
Cold Thermal Energy Storage
Funder
StandUp
Note
QC 20110530Available from: 2011-05-30 Created: 2011-05-24 Last updated: 2011-06-29Bibliographically approved
In thesis
1. Heat Transfer Aspects of Using Phase Change Material in Thermal Energy Storage Applications
Open this publication in new window or tab >>Heat Transfer Aspects of Using Phase Change Material in Thermal Energy Storage Applications
2011 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Innovative methods for providing sustainable heating and cooling through thermal energy storage (TES) have gained increasing attention as heating and cooling demands in the built environment continue to climb. As energy prices continue to soar and systems reach their maximal capacity, there is an urgent need for alternatives to alleviate peak energy use. TES systems allow decoupling of energy production from energy utilization, both in location and in time. It is shown in this thesis that successful implementation of TES in the built environment alleviates peak energy load and reduces network expansion as well as the marginal energy production cost.

This thesis analyzes phase change material (PCM) based TES systems in terms of material property characterization, numerical modeling and validation of thermal storage, as well as case specific techno-economic feasibility studies of system integration. The difficulties identified in latent heat TES design, such as heat transfer aspects, subcooling and identification of phase separation, have been analyzed through Temperature-History mapping and TES numerical modeling with experimental validation. This work focuses on the interdependency between resource availability, thermal charge/discharge power and storage capacity. In a situation where resource availability is limited, e.g. when using free cooling, waste heat or off-peak storage, the thermal power and storage capacity are strongly interrelated and should always be considered in unison to reach an acceptable techno-economic solution. Furthermore, when considering TES integration into an existing thermal energy distribution network, three adverse aspects are revealed in the Swedish case study: the single tariff system, the low-return temperature penalty, and the low storage utilization rate. These issues can be overcome through better adapted policies and optimized storage control strategies. Finally, despite the currently unfavorable conditions in the Swedish energy system, it is shown that TES has the potential to mitigate climate change through greenhouse gas emission reduction by displacing fossil-fuel based marginal thermal energy production.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xiv, 59 p.
Series
Trita-KRV, ISSN 1100-7990 ; 11/04
Keyword
thermal energy storage, comfort cooling, phase change materials, heat transfer
National Category
Energy Engineering Other Materials Engineering Other Environmental Engineering
Research subject
SRA - Energy
Identifiers
urn:nbn:se:kth:diva-34263 (URN)978-91-7501-034-2 (ISBN)
Presentation
2011-06-22, M2, Brinellvägen 64, KTH, Stockholm, 15:47 (English)
Opponent
Supervisors
Projects
Cold Thermal Energy Storage
Funder
StandUp
Note
QC 20110629Available from: 2011-06-29 Created: 2011-05-30 Last updated: 2011-06-29Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Chiu, Justin NingWeiMartin, Viktoria

Search in DiVA

By author/editor
Chiu, Justin NingWeiMartin, ViktoriaSetterwall, Fredrik
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 113 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf