Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-Flame Evaluation of Emission Formation in Optical and Metal Engine Using High Speed Camera and Endoscope
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
2010 (English)In: THIESEL 2010, 2010Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2010.
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-34256OAI: oai:DiVA.org:kth-34256DiVA: diva2:419891
Conference
Conference on Thermo and Fluid DYnamics Processes in Diesel Engines
Note
QC 20110530Available from: 2011-05-30 Created: 2011-05-30 Last updated: 2011-05-30Bibliographically approved
In thesis
1. Methods for Characterization of the Diesel Combustion and Emission Formation Processes
Open this publication in new window or tab >>Methods for Characterization of the Diesel Combustion and Emission Formation Processes
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient strategy of the engine involved reducing the EGR-rate to zero during the initial parts of the transient. Increased general flame temperature and the occurrence of small hot zones were found to explain the increase in NO-emissions during these transients.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 111 p.
Series
Trita-MMK, ISSN 1400-1179 ; 2011:10
Keyword
diesel engine emissions
National Category
Vehicle Engineering
Research subject
SRA - Energy
Identifiers
urn:nbn:se:kth:diva-34140 (URN)978-91-7501-037-3 (ISBN)
Public defence
2011-06-08, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
StandUp
Note
QC 20110530Available from: 2011-05-30 Created: 2011-05-26 Last updated: 2011-09-13Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lindström, MikaelÅngström, Hans-Erik
By organisation
Machine Design (Div.)
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 387 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf