Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
UNSTEADY FORCES OF ROTOR BLADES IN FULL AND PARTIAL ADMISSION TURBINES
2010 (English)In: PROCEEDINGS OF THE ASME TURBO EXPO 2010: TURBOMACHINERY: AXIAL FLOW FAN AND COMPRESSOR AERODYNAMICS DESIGN METHODS, AND CFD MODELING FOR TURBOMACHINERY, VOL 7, PTS A-C, New York: AMER SOC MECHANICAL ENGINEERS , 2010, 2085-2098 p.Chapter in book (Refereed)
Abstract [en]

A Numerical and experimental study of partial admission in a low reaction two-stage axial air test turbine is performed in this paper. In order to model one part load configuration, corresponding to zero flow in one of the admission arcs, the inlet was blocked at one segmental arc, at the leading edge of the first stage guide vanes. Because of the unsymmetrical geometry, the full annulus of the turbine was modeled numerically. The computational domain contained the shroud and disc cavities. The full admission turbine configuration was also modeled for reference comparisons. Computed unsteady forces of the first stage rotor blades showed cyclic change both in magnitude and direction while moving around the circumference. Unsteady forces of first stage rotor blades were plotted in frequency domain using Fourier analysis. The largest amplitudes caused by partial admission were at first and second multiples of rotational frequency due to the existence of single blockage and change in the force direction. Unsteady forces of rotating blades in a partial admission turbine could cause unexpected failures in operation; therefore knowledge about the frequency content of the unsteady force vector and the related amplitudes is vital in the design process of partial admission turbine blades. Pressure plots showed that the non-uniformity in the static pressure field decrease considerably downstream the second stage stator row, while the non-uniformity in the dynamic pressure field is still large. Numerical results between the first stage stator and rotor rows showed that the leakage flow leave the blade path down to the disc cavity in the admitted channel and re-enter into the main flow in the blocked channel. This process compensate the sudden pressure drop downstream the blockage but reduce the momentum of the main flow.

Place, publisher, year, edition, pages
New York: AMER SOC MECHANICAL ENGINEERS , 2010. 2085-2098 p.
Series
PROCEEDINGS OF THE ASME TURBO EXPO
Identifiers
URN: urn:nbn:se:kth:diva-35141ISI: 000291010301001Scopus ID: 2-s2.0-82055196826ISBN: 978-0-7918-4402-1 (print)OAI: oai:DiVA.org:kth-35141DiVA: diva2:426071
Note
QC 20110622Available from: 2011-06-22 Created: 2011-06-20 Last updated: 2011-06-22Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf