Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phonons of the anomalous element cerium
Show others and affiliations
2011 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, no 23, 9342-9345 p.Article in journal (Refereed) Published
Abstract [en]

Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural gamma-alpha transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the gamma -> alpha transition, and compared it with theoretical results using ab initio lattice dynamics. Several phonon branches show strong changes in the dispersion shape, indicating large modifications in the interactions between phonons and conduction electrons. This is reflected as well by the lattice Gruneisen parameters, particularly around the X point. We derive a vibrational entropy change Delta S-vib(gamma-alpha) approximate to (0.33 +/- 0.03)k(B), illustrating the importance of the lattice contribution to the transition. Additionally, we compare first principles calculations with the experiments to shed light on the mechanism underlying the isostructural volume collapse in cerium under pressure.

Place, publisher, year, edition, pages
2011. Vol. 108, no 23, 9342-9345 p.
Keyword [en]
GENERALIZED GRADIENT APPROXIMATION; ALPHA-GAMMA-TRANSITION; KONDO VOLUME-COLLAPSE; CE; DYNAMICS; LATTICE
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-35111DOI: 10.1073/pnas.1015945108ISI: 000291341400012Scopus ID: 2-s2.0-79959363060OAI: oai:DiVA.org:kth-35111DiVA: diva2:428596
Note
QC 20110630Available from: 2011-06-30 Created: 2011-06-20 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kim, Duck YoungAhuja, RajeevJohansson, Börje
By organisation
Applied Material Physics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf