Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Macromolecular Design of Aliphatic Polyesters with Maintained Mechanical Properties and a Rapid, Customized Degradation Profile
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
2011 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, no 6, 2382-2388 p.Article in journal (Refereed) Published
Abstract [en]

An innovative type of triblock copolymer that maintains and even increases the mechanical properties of poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) with a controlled, predictable, and rapid degradation profile has been synthesized. Elastic triblock copolymers were formed from the hydrophobic and crystalline PLLA and PCL with an amorphous and hydrophilic middle block of poly(but-2-ene-1,4-diyl malonate) (PBM). The polymers were subjected to degradation in PBS at 37 degrees C for up to 91 days. Prior to degradation, ductility of the PLLA-PBM-PLLA was approximately 4 times greater than that of the homopolymer of PLLA, whereas the modulus and tensile stress at break were unchanged. A rapid initial hydrolysis in the amorphous PBM middle block changed the microstructure from triblock to diblock with a significant reduction in ductility and molecular weight. The macromolecular structure of the triblock copolymer of PLLA and PBM generates a more flexible and easier material to handle during implant, with the advantage of a customized degradation profile, demonstrating its potential use in future biomedical applications.

Place, publisher, year, edition, pages
2011. Vol. 12, no 6, 2382-2388 p.
Keyword [en]
RING-OPENING POLYMERIZATION, EPSILON-CAPROLACTONE, L-LACTIDE, TRIMETHYLENE CARBONATE, HYDROLYTIC DEGRADATION, MULTIBLOCK COPOLYMERS, TRIBLOCK COPOLYMERS, BLOCK-COPOLYMERS, 1, 5-DIOXEPAN-2-ONE, POLYLACTONES
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-35634DOI: 10.1021/bm2004675ISI: 000291499900051Scopus ID: 2-s2.0-79958840855OAI: oai:DiVA.org:kth-35634DiVA: diva2:429214
Funder
Swedish Research Council, 2008-5538EU, European Research Council, 246776
Note
QC 20110704Available from: 2011-07-04 Created: 2011-07-04 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Macromolecular synthesis of functional degradable aliphatic polyesters and porous scaffold design
Open this publication in new window or tab >>Macromolecular synthesis of functional degradable aliphatic polyesters and porous scaffold design
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is an increasing demand for new materials in biomedical applications with material properties that are highly specific for each application area. The search for new materials requires the creation of materials with suitable mechanical properties, functionalities, three-dimensional structures and a controlled degradation profile. The focus of the work described in this thesis has been on the synthesis of functional degradable aliphatic polyesters, on the design of porous scaffolds and on their synthesis with bio-safe catalyst/initiator systems.  

An unsaturated aliphatic polyester has been synthesized by condensation polymerization to produce poly(but-2-ene-1,4-diyl malonate) (PBM), which was applicable as a cross-linked network and as a macro-co-initiator for the ring-opening polymerization (ROP) of cyclic ester monomers. The method of preparation of PBM was simple and straightforward and there was no need to purify the monomers or add a catalyst. PBM was successfully cross-linked with UV-radiation to form a transparent, colorless, flexible and strong film. When PBM was used as a macro-co-initiator, a triblock copolymer was formed with PBM middle blocks and poly(L-lactide) (PLLA) or poly(ε-caprolactone) side blocks. The ductility of the triblock copolymer of PLLA was greatly enhanced and the strength was maintained compared to the polymer obtained when PLLA was polymerized with ethylene glycol as co-initiator. The triblock copolymers were easily cross-linked to give materials with greater strength and higher modulus as a result. When these polymers were subjected to hydrolysis, a rapid initial hydrolysis of the amorphous PBM middle block changed the microstructure from triblock to diblock, with a significant reduction in ductility and number average molecular weight. Highly porous scaffolds were created from these functional materials and the mechanical properties were evaluated by a cyclic compression test under mimicked physiological conditions.

Copolymers of L-lactide (LLA) and ε-caprolactone (CL), trimethylene carbonate (TMC) or 1,5-dioxepane-2-one (DXO) have been synthesized with a low stannous-2-ethyl hexanoate  (Sn(Oct)2) ratio and used to fabricate porous tubular scaffolds. The tubes were designed to have a range of mechanical properties suitable for nerve regeneration, with different porosities and different numbers of layers in the tube wall. The adaptability of an immersion-coating and porogen-leaching technique was demonstrated by creating tubes with different dimensions.

Although a low amount of residual tin (monomer-to-initiator ratio of 10000:1) is accepted in biomedical applications, an efficient bio-safe catalyst/initiator system would be favored. The catalytic activities of bio-safe Bi (III) acetate and creatinine towards the ROP of LLA have been compared with those of Sn(Oct)2-based systems and with those of a system catalyzed by enzymes. All these systems were shown to be suitable catalysts for the synthesis of high and moderate molecular weight PLLAs.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 75 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2011:45
Keyword
functional polyesters, condensation polymerization, L-lactide, ε-caprolactone, triblock copolymer, mechanical properties, porous scaffolds, tissue engineering, ring-opening polymerization, Bi(III) acetate, creatinine, stannous 2-ethylhexanoate, enzyme, degradation products
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-38583 (URN)978-91-7501-060-1 (ISBN)
Public defence
2011-09-22, F3, Lindstedtsvägen 26, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20110901Available from: 2011-08-30 Created: 2011-08-29 Last updated: 2011-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Målberg, SofiaHöglund, AndersAlbertsson, Ann-Christine
By organisation
Polymer Technology
In the same journal
Biomacromolecules
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf