References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the 3-Torsion Part of the Homology of the Chessboard ComplexPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2010 (English)In: Annals of Combinatorics, ISSN 0218-0006, E-ISSN 0219-3094, Vol. 14, no 4, 487-505 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2010. Vol. 14, no 4, 487-505 p.
##### Keyword [en]

matching complex, chessboard complex, simplicial homology
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-36258DOI: 10.1007/s00026-011-0073-xISI: 000292037700007ScopusID: 2-s2.0-79952705706OAI: oai:DiVA.org:kth-36258DiVA: diva2:430478
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20110711Available from: 2011-07-11 Created: 2011-07-11 Last updated: 2011-07-11Bibliographically approved

Let 1 (d) (M-m,M-n; Z) not equal 0. Second, for each k >= 0, we show that there is a polynomial f(k)(a, b) of degree 3k such that the dimension of (H) over tilde (k+a+2b-2) (M-k+a+3b-1,M- k+2a+3b-1; Z(3)), viewed as a vector space over Z(3), is at most f(k)(a, b) for all a >= 0 and b >= k+ 2. Third, we give a computer- free proof that (H) over tilde (2) (M-5,M-5; Z) congruent to Z(3). Several proofs are based on a new long exact sequence relating the homology of a certain subcomplex of M-m,M-n to the homology of M-m-2,M-n-1 and M-m-2,M-n-3.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});