Change search
ReferencesLink to record
Permanent link

Direct link
Continuous monitoring of the High Coast Suspension Bridge: Measurement period: February to December 2010
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.ORCID iD: 0000-0002-5447-2068
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
2011 (English)Report (Other academic)
Place, publisher, year, edition, pages
2011. , 32 p.
, Technical Report, 2011:03
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-36805OAI: diva2:431132
QC 20110809Available from: 2011-08-09 Created: 2011-07-15 Last updated: 2014-09-10Bibliographically approved
In thesis
1. Application of monitoring to dynamic characterization and damage detection in bridges
Open this publication in new window or tab >>Application of monitoring to dynamic characterization and damage detection in bridges
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The field of bridge monitoring is one of rapid development. Advances in sensor technologies, in data communication and processing algorithms all affect the possibilities of Structural Monitoring in Bridges. Bridges are a very critical part of a country’s infrastructure, they are expensive to build and maintain, and many uncertainties surround important factors determining their serviceability and deterioration state. As such, bridges are good candidates for monitoring. Monitoring can extend the service life and avoid or postpone replacement, repair or strengthening works. The amount of resources saved, both to the owner and the users, by reducing the amount of non-operational time can easily justify the extra investment in monitoring.

This thesis consists of an extended summary and five appended papers. The thesis presents advances in sensor technology, damage identification algorithms, Bridge Weigh-In-Motion systems, and other techniques used in bridge monitoring. Four case studies are presented. In the first paper, a fully operational Bridge Weigh-In-Motion system is developed and deployed in a steel railway bridge. The gathered data was studied to obtain a characterization of the site specific traffic. In the second paper, the seasonal variability of a ballasted railway bridge is studied and characterized in its natural variability. In the third, the non-linear characteristic of a ballasted railway bridge is studied and described stochastically. In the fourth, a novel damage detection algorithm based in Bridge Weigh-In-Motion data and machine learning algorithms is presented and tested on a numerical experiment. In the fifth, a bridge and traffic monitoring system is implemented in a suspension bridge to study the cause of unexpected wear in the bridge bearings.

Some of the major scientific contributions of this work are: 1) the development of a B-WIM for railway traffic capable of estimating the load on individual axles; 2) the characterization of in-situ measured railway traffic in Stockholm, with axle weights and train configuration; 3) the quantification of a hitherto unreported environmental behaviour in ballasted bridges and possible mechanisms for its explanation (this behaviour was shown to be of great importance for monitoring of bridges located in colder climate) 4) the statistical quantification of the nonlinearities of a railway bridge and its yearly variations and 5) the integration of B-WIM data into damage detection techniques.


Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 65 p.
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 126
Structural health monitoring, Traffic monitoring, Bridge monitoring, Bridge Weigh-In-Motion, BWIM, Damage detection, Suspension bridge bearings, Axle loads, Dynamics, Temperature effect
National Category
Infrastructure Engineering
urn:nbn:se:kth:diva-150804 (URN)
Public defence
2014-09-19, Sal F3, Lindstedtsvägen 26, Sing-Sing, KTH, Stockholm, 10:00 (English)

QC 20140910

Available from: 2014-09-10 Created: 2014-09-10 Last updated: 2014-09-10Bibliographically approved

Open Access in DiVA

Karoumi-Gonzalez_rapport(3946 kB)364 downloads
File information
File name FULLTEXT01.pdfFile size 3946 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Karoumi, RaidGonzalez, Ignacio
By organisation
Structural Design and Bridges
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 364 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 99 hits
ReferencesLink to record
Permanent link

Direct link