Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ultrafast switching in a synthetic antiferromagnetic magnetic random-access memory device
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
Show others and affiliations
2011 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 83, no 22Article in journal (Refereed) Published
Abstract [en]

The dynamics of a synthetic antiferromagnet (a metallic trilayer) have been explored and are shown to exhibit ultrafast switching on a time scale of tens of ps. This conclusion is based on first-principles, atomistic spin dynamics simulations. The simulations are performed at finite temperature, as well as at T = 0 K (the macrospin limit), and we observe a marked temperature dependence of the switching phenomenon. It is shown that, to reach very high switching speeds, it is important that the two ferromagnetic components of the synthetic antiferromagnet have oppositely directed external fields to one another. Then a complex collaboration between precession switching of an internal exchange field and the damping switching of the external field occurs, which considerably accelerates the magnetization dynamics. We discuss a possible application of this fast switching as a magnetic random access memory device, which has as a key component intrinsic antiferromagnetic couplings and an applied Oersted field.

Place, publisher, year, edition, pages
2011. Vol. 83, no 22
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-36874DOI: 10.1103/PhysRevB.83.224429ISI: 000292253000003Scopus ID: 2-s2.0-79961112948OAI: oai:DiVA.org:kth-36874DiVA: diva2:431606
Funder
Swedish Research CouncilSwedish eā€Science Research Center
Note
QC 20110721Available from: 2011-07-21 Created: 2011-07-18 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Delin, Anna

Search in DiVA

By author/editor
Bergman, AndersDelin, Anna
By organisation
Applied Material Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf