Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction
Show others and affiliations
2007 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 46, no 6, 1981-1991 p.Article in journal (Refereed) Published
Abstract [en]

The displacement of CO in a few simple Fe(I)-Fe(I) hydrogenase model complexes by bisphosphine ligands Ph2P-(CH2)(n)-PPh2 [with n = 1 (dppm) or n = 2 (dppe)] is described. The reaction of [{mu-(SCH2)(2)CH2}Fe-2(CO)(6)] (1) and [{mu-(SCH2)(2)N(CH2CH2CH3)}Fe-2(CO)(6)] (2) with dppe gave double butterfly complexes [{mu-(SCH2)(2)CH2}Fe-2(CO)(5)(Ph2PCH2)](2) (3) and [{mu-(SCH2)(2)N(CH2CH2CH3)}Fe-2(CO)(5)(Ph2PCH2)](2) (4), where two Fe2S2 units are linked by the bisphosphine. In addition, an unexpected byproduct, [{mu-(SCH2)(2)N(CH2CH2CH3)}Fe-2(CO)(5){Ph2PCH2CH2(Ph2PS)}] (5), was isolated when 2 was used as a substrate, where only one phosphorus atom of dppe is coordinated, while the other has been converted to PS, presumably by nucleophilic attack on bridging sulfur. By contrast, the reaction of 1 and 2 with dppm under mild conditions gave only complexes [{mu-(SCH2)(2)CH2}Fe-2(CO)(5)(Ph2PCH2PPh2)] (6) and [{mu-(SCH2)(2)N(CH2CH2CH3)}Fe-2(CO)(5)(Ph2PCH2PPh2)] (8), where one ligand coordinated in a monodentate fashion to one Fe2S2 unit. Furthermore, under forcing conditions, the complexes [{mu-(SCH2)(2)CH2}Fe-2(CO)(4){mu-(Ph2P)(2)CH2}] (7) and [{mu-(SCH2)(2)N(CH2CH2CH3)}Fe-2(CO)(4){mu-(Ph2P)(2)CH2}] (9) were formed, where the phosphine acts as a bidentate ligand, binding to both the iron atoms in the same molecular unit. Electrochemical studies show that the complexes 3, 4, and 9 catalyze the reduction of protons to molecular hydrogen, with 4 electrolyzed already at -1.40 V versus Ag/AgNO3 (-1.0 V vs NHE).

Place, publisher, year, edition, pages
2007. Vol. 46, no 6, 1981-1991 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-37015DOI: 10.1021/ic0610278ISI: 000244798800017PubMedID: 17295467Scopus ID: 2-s2.0-34047145454OAI: oai:DiVA.org:kth-37015DiVA: diva2:431832
Available from: 2011-07-26 Created: 2011-07-26 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf