Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A free boundary problem for the Laplacian with a constant Bernoulli-type boundary condition
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-4309-9242
2007 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 67, no 8, 2497-2505 p.Article in journal (Refereed) Published
Abstract [en]

We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling's technique, by defining two classes of sub- and super-solutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.

Place, publisher, year, edition, pages
2007. Vol. 67, no 8, 2497-2505 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-37062DOI: 10.1016/j.na.2006.08.045ISI: 000248332300014Scopus ID: 2-s2.0-34250774494OAI: oai:DiVA.org:kth-37062DiVA: diva2:431943
Available from: 2011-07-27 Created: 2011-07-27 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lindgren, Erik

Search in DiVA

By author/editor
Lindgren, Erik
By organisation
Mathematics (Dept.)
In the same journal
Nonlinear Analysis
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf