Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compact exceptional simple Kantor triple systems defined on tensor products of composition algebras
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2007 (English)In: Communications in Algebra, ISSN 0092-7872, E-ISSN 1532-4125, Vol. 35, no 11, 3699-3712 p.Article in journal (Refereed) Published
Abstract [en]

this article we give the classi. cation of compact exceptional simple Kantor triple systems defined on tensor products of composition algebras A = A(1) circle times A(2) such that their Kantor algebras L(phi,A) are real forms of exceptional simple Lie algebras.

Place, publisher, year, edition, pages
2007. Vol. 35, no 11, 3699-3712 p.
Keyword [en]
composition algebras, Kantor triple systems, structurable algebras
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-37083DOI: 10.1080/00927870701404739ISI: 000250252300026Scopus ID: 2-s2.0-35448982632OAI: oai:DiVA.org:kth-37083DiVA: diva2:432018
Available from: 2011-07-28 Created: 2011-07-28 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Mondoc, Daniel
By organisation
Mathematics (Dept.)
In the same journal
Communications in Algebra
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf