Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compact realifications of exceptional simple Kantor triple systems defined on tensor products of composition algebras
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2007 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 307, no 2, 917-929 p.Article in journal (Refereed) Published
Abstract [en]

In this paper we give by a unified formula the classification of exceptional compact simple Kantor triple systems defined on tensor products of composition algebras corresponding to realifications of exceptional simple Lie algebras.

Place, publisher, year, edition, pages
2007. Vol. 307, no 2, 917-929 p.
Keyword [en]
composition algebras, Kantor triple systems, structurable algebras
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-37084DOI: 10.1016/j.jalgebra.2006.08.032ISI: 000243208900020Scopus ID: 2-s2.0-33751394208OAI: oai:DiVA.org:kth-37084DiVA: diva2:432020
Available from: 2011-07-28 Created: 2011-07-28 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Mondoc, Daniel
By organisation
Mathematics (Dept.)
In the same journal
Journal of Algebra
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf