Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An amplitude quotient based method to analyze changes in the shape of the glottal pulse in the regulation of vocal intensity
KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH.
KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH.
2006 (English)In: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 120, no 2, p. 1052-1062Article in journal (Refereed) Published
Abstract [en]

This study presents an approach to visualizing intensity regulation in speech. The method expresses a voice sample in a two-dimensional space using amplitude-domain values extracted from the glottal flow estimated by inverse filtering. The two-dimensional presentation is obtained by expressing a time-domainmeasure of the glottal pulse, the amplitude quotient (AQ), as a function of the negative peak amplitude of the flow derivative (d(peak)). The regulation of vocal intensity was analyzed with the proposed method from voices varying from extremely soft to very loud with a SPL range of approximately 55 dB. When vocal intensity was increased, the speech samples first showed a rapidly decreasing trend as expressed on the proposed AQ-d(peak) graph. When intensity was further raised, the location of the samples converged toward a horizontal line, the asymptote of a hypothetical hyperbola. This behavior of the AQ-d(peak) graph indicates that the intensity regulation strategy changes from laryngeal to respiratory mechanisms and the method chosen makes it possible to quantify how control mechanisms underlying the regulation of vocal intensity change gradually between the two means. The proposed presentation constitutes an easy-to-implement method to visualize the function of voice production in intensity regulation because the only information needed is the glottal flow wave form estimated by inverse filtering the acoustic speech pressure signal.

Place, publisher, year, edition, pages
2006. Vol. 120, no 2, p. 1052-1062
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-37386DOI: 10.1121/1.2211589ISI: 000239835400050PubMedID: 16938991Scopus ID: 2-s2.0-33747109882OAI: oai:DiVA.org:kth-37386DiVA, id: diva2:433583
Available from: 2011-08-10 Created: 2011-08-10 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Björkner, EvaSundberg, Johan
By organisation
Speech, Music and Hearing, TMH
In the same journal
Journal of the Acoustical Society of America
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf