Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Minimal area problems for functions with integral representation
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2006 (English)In: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538, Vol. 98, 83-111 p.Article in journal (Refereed) Published
Abstract [en]

We study the minimization problem for the Dirichlet integral in some standard classes of analytic functions. In particular, we solve the minimal area a(2)-problern for convex functions and for typically real functions. The latter gives a new solution to the minimal area a(2)-problem for the class S of normalized univalent functions in the unit disc.

Place, publisher, year, edition, pages
2006. Vol. 98, 83-111 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-37390DOI: 10.1007/BF02790271ISI: 000240640700004Scopus ID: 2-s2.0-33748580686OAI: oai:DiVA.org:kth-37390DiVA: diva2:433624
Available from: 2011-08-10 Created: 2011-08-10 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Shapiro, Harold S.
By organisation
Mathematics (Dept.)
In the same journal
Journal d'Analyse Mathematique
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf