Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the tunneling effect for magnetic Schrödinger operators in antidot lattices
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2006 (English)In: Asymptotic Analysis, ISSN 0921-7134, E-ISSN 1875-8576, Vol. 48, no 1-2, 91-120 p.Article in journal (Refereed) Published
Abstract [en]

We study the Schrodinger operator (hD-A)(2) with periodic magnetic field B=curl A in an antidot lattice Omega(infinity) = R-2\boolean OR(alpha is an element of Gamma)(U+alpha). Neumann boundary conditions lead to spectrum below hinf B. Under suitable assumptions on a "one-well problem" we prove that this spectrum is localized inside an exponentially small interval in the semi-classical limit h -> 0. For this purpose we construct a basis of the corresponding spectral subspace with natural localization and symmetry properties.

Place, publisher, year, edition, pages
2006. Vol. 48, no 1-2, 91-120 p.
Keyword [en]
semi-classical analysis, tunneling effect, magnetic Schrodinger operator, periodic operator
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-37491ISI: 000237742100006Scopus ID: 2-s2.0-33646722843OAI: oai:DiVA.org:kth-37491DiVA: diva2:434075
Note

QC 20141128

Available from: 2011-08-12 Created: 2011-08-12 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Frank, Rupert L.
By organisation
Mathematics (Div.)
In the same journal
Asymptotic Analysis
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf