Change search
ReferencesLink to record
Permanent link

Direct link
Nonradiative surface plasmon assisted microscale Marangoni forces
KTH, School of Engineering Sciences (SCI), Mechanics.
Show others and affiliations
2006 (English)In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, Vol. 73, no 6, 066311- p.Article in journal (Refereed) Published
Abstract [en]

When a liquid droplet experiences a temperature inhomogeneity along its bounding surface, a surface energy gradient is engendered, which when, in a continuous sense, exceeding a threshold, results in a convective flow dissipating the energy. If the associated temperature gradients are sustained by the interface between the liquid and a supporting substrate, the induced flow can result in the lateral motion of the droplet overcoming the viscosity and inertia. Recently, pico-liter adsorbed and applied droplets were shown experimentally to be transported, and divided by the decay of optically excited surface plasmons into phonons in a thin gold foil. The decaying events locally modify the temperature of the liquid-solid interface, establishing microscale thermal gradients of sufficient magnitude for the droplet to undergo thermocapillary flow. We present experimental evidence of such gradients resulting in local surface modification associated with the excitation of surface plasmons. We show theoretically that the observed effect is due to Marangoni forces, and computationally visualize the flow characteristics for the experimental parameters. As an application based on our results, we propose a method for an all-optical modulation of light by light mediated by the droplet oscillations. Furthermore, the results have important consequences for microfluidics, droplet actuation, and simultaneous surface plasmon resonance sensing and spectroscopy.

Place, publisher, year, edition, pages
2006. Vol. 73, no 6, 066311- p.
Keyword [en]
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-37722DOI: 10.1103/PhysRevE.73.066311ISI: 000238694200091ScopusID: 2-s2.0-33745630951OAI: diva2:434986
QC 20110816Available from: 2011-08-16 Created: 2011-08-16 Last updated: 2011-08-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zahrai, Said
By organisation
In the same journal
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link