Change search
ReferencesLink to record
Permanent link

Direct link
Two-dimensional domain engineering in LiNbO3 via a hybrid patterning technique
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Electronics and Quantum Optics, QEO.
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.ORCID iD: 0000-0001-7688-1367
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.ORCID iD: 0000-0002-2508-391X
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Electronics and Quantum Optics, QEO.ORCID iD: 0000-0001-7185-0457
2011 (English)In: Optical Materials Express, ISSN 2159-3930, Vol. 1, no 3, 365-371 p.Article in journal (Refereed) Published
Abstract [en]

We propose a novel electric field poling technique for the fabrication of nonlinear photonic crystals in congruent LiNbO3 substrates, based on a hybrid bi-dimensional mask, which combines periodic proton-exchange and electrode patterns. With it we demonstrate rectangular bulk lattices with a periodicity of 8 µm x 6.78 µm in 500 µm-thick substrates.

Place, publisher, year, edition, pages
2011. Vol. 1, no 3, 365-371 p.
Keyword [en]
Electric field poling, Electrode pattern, Nonlinear photonic crystals, Patterning techniques, Proton-exchange, Two-dimensional domain
National Category
Nano Technology
URN: urn:nbn:se:kth:diva-38035DOI: 10.1364/OME.1.000365ISI: 000299047600006ScopusID: 2-s2.0-84862220434OAI: diva2:435768
Swedish Research Council, VR 621-2008-3601Swedish Research Council, PIEF-GA-2009-234798 622-2010-526

QC 20110930

Available from: 2011-08-19 Created: 2011-08-19 Last updated: 2015-06-24Bibliographically approved
In thesis
1. Engineering ferroelectric domains and charge transport by proton exchange in lithium niobate
Open this publication in new window or tab >>Engineering ferroelectric domains and charge transport by proton exchange in lithium niobate
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ferroelectrics are dielectric materials possessing a switchable spontaneous polarization, which have attracted a growing interest for a broad variety of applications such as ferroelectric lithography, artificial photosynthesis, random and dynamic access memories (FeRAMs and DRAM), but also for the fabrication of devices for nonlinear optics, etc. All the aforementioned applications rely on the control of the ferroelectric domains arrangement, or the charge distribution and transport. In this regard, the main prerequisite is the engineering of the spontaneous polarization, obtained by reversing its orientation or locally inhibiting it. In the latter case, the interface created by the spatial discontinuity of the spontaneous polarization generates local charge accumulation, which can be used to extend the capabilities of ferroelectric materials.

This thesis shows how engineering the spontaneous polarization in lithium niobate (LN) by means of proton exchange (PE), a temperature-activated ion exchange process, can be used to develop novel approaches for ferroelectric domain structuring, as well as fabrication of self-assembled nanostructures and control of ionic/electronic transport in this crystal.

In particular, it is shown how the electrostatic charge at PE:LN junctions lying below the crystal surface can effectively counteract lateral domain broadening, which in standard electric field poling hampers the fabrication of ferroelectric gratings for Quasi-Phase Matching with periods shorter than 10 μm. By using such an approach, ferroelectric gratings with periods as small as ~ 8 μm are fabricated and characterized for efficient nonlinear optical applications. The viability of the approach for the fabrication of denser gratings is also investigated.

 The charge distribution at PE:LN junctions lying on the crystal surface is modelled and used to drive the deposition of self-assembled nanowires by means of silver photoreduction. Such a novel approach for PE lithography is characterized for different experimental conditions. The results highlight a marked influence of the orientation of the spontaneous polarization, the deposition times, as well as the reactants concentrations and the doping of the substrate with MgO.

Based on the fact that proton exchange locally reduces the spontaneous polarization, a quick and non-destructive method for imaging PE regions in lithium niobate with nanoscale resolution is also developed by using Piezoresponse Force Microscopy. Moreover the relative reduction of the piezoelectric d33 coefficient associated to PE is estimated in lithium niobate substrates with and without MgO-doping.

Finally, by using advanced Scanning Probe Microscopy techniques, the features of charge transport in PE regions are further investigated with nanoscale resolution. A strong unipolar response is found and interpreted in light of ionic-electronic motion coupling due to the interplay of interstitial protons in the PE regions, nanoscale electrochemical reactions at the tip-surface interface, and rectifying metal-PE junctions.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xviii, 153 p.
TRITA-FYS, ISSN 0280-316X ; 2015:15
Lithium niobate, Ferroelectrics
National Category
Nano Technology
Research subject
Materials Science and Engineering; Physics
urn:nbn:se:kth:diva-162269 (URN)978-97-7595-482-0 (ISBN)
Public defence
2015-04-15, Fd5, Albanova University Center, Roslagstullsbacken 21, KTH, Stockholm, 10:00 (English)

QC 20150325

Available from: 2015-03-25 Created: 2015-03-24 Last updated: 2015-04-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Manzo, MicheleLaurell, FredrikPasiskevicius, ValdasGallo, Katia
By organisation
Quantum Electronics and Quantum Optics, QEOLaser Physics
In the same journal
Optical Materials Express
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 68 hits
ReferencesLink to record
Permanent link

Direct link