Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Absolutely continuous spectrum of a class of random nonergodic Schrodinger operators
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2005 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, no 42, 2559-2577 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2005. no 42, 2559-2577 p.
Keyword [en]
Tight-Binding Model, Anderson Localization, Large Disorder, Decaying Randomness, Potentials, Perturbations, Bernoulli, Absence, Energy
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-38170ISI: 000233722900001Scopus ID: 2-s2.0-28444495091OAI: oai:DiVA.org:kth-38170DiVA: diva2:436106
Note

QC 20110822

Available from: 2011-08-22 Created: 2011-08-22 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Frank, Rupert L.Safronov, Oleg
By organisation
Mathematics (Div.)
In the same journal
International mathematics research notices
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf