Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.
2005 (English)In: American Journal of Physiology. Heart and Circulatory Physiology, ISSN 0363-6135, E-ISSN 1522-1539, Vol. 289, no 5, H2048-H2058 p.Article in journal (Refereed) Published
Abstract [en]

At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 ( mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.

Place, publisher, year, edition, pages
2005. Vol. 289, no 5, H2048-H2058 p.
Keyword [en]
human left anterior descending coronary artery, elasticity, material model, mechanical properties, ultimate tensile strength
National Category
Dentistry
Identifiers
URN: urn:nbn:se:kth:diva-38264DOI: 10.1152/ajpheart.00934.2004ISI: 000232497500035Scopus ID: 2-s2.0-27144475777OAI: oai:DiVA.org:kth-38264DiVA: diva2:436463
Note
QC 20110823Available from: 2011-08-23 Created: 2011-08-23 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Holzapfel, Gerhard A.Sommer, GerhardGasser, Christian T.
By organisation
Biomechanics
In the same journal
American Journal of Physiology. Heart and Circulatory Physiology
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf