Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
John-Nirenberg lemmas for a doubling measure
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2011 (English)In: Studia Mathematica, ISSN 0039-3223, E-ISSN 1730-6337, Vol. 204, no 1, 21-37 p.Article in journal (Refereed) Published
Abstract [en]

We study, in the context of doubling metric measure spaces, a class of BMO type functions defined by John and Nirenberg. In particular, we present a new version of the Calderon-Zygmund decomposition in metric spaces and use it to prove the corresponding John Nirenberg inequality.

Place, publisher, year, edition, pages
2011. Vol. 204, no 1, 21-37 p.
Keyword [en]
John-Nirenberg lemma, doubling measure, Calderon-Zygmund decomposition, good-lambda inequality
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-38320DOI: 10.4064/sm204-1-2ISI: 000293110900002Scopus ID: 2-s2.0-80051756051OAI: oai:DiVA.org:kth-38320DiVA: diva2:436755
Available from: 2011-08-24 Created: 2011-08-24 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kansanen, Outi Elina
By organisation
Mathematics (Dept.)
In the same journal
Studia Mathematica
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 244 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf