Change search
ReferencesLink to record
Permanent link

Direct link
Probing vertically graded anisotropy in FePtCu films
KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
Show others and affiliations
2011 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 5, 054434- p.Article in journal (Refereed) Published
Abstract [en]

Field-dependent polarized neutron reflectivity (PNR) and magnetometry are employed to study the magnetic properties of compositionally uniform and graded FePtCu films as a function of annealing temperature (T(A)). The PNR results are able to directly probe the compositional and anisotropy variations through the film thickness. Further details about how the reversal mechanisms evolve are then elucidated by using a first-order reversal curve technique. The reversal of the graded sample annealed at 300 degrees C occurs by an initial rapid switching of the dominant soft A1 phase toward the surface of the film, followed by the gradual reversal of the residual hard phase components toward the bottom. This indicates that the anisotropy gradient is not well established at this low T(A). A fundamentally different mechanism is found after annealing at 400 degrees C, where the rapid switching of the entire film is preceded by a gradual reversal of the soft layers. This suggests that the anisotropy gradient has become better established through the film thickness. The field-dependent PNR measurements confirm the existence of an anisotropy gradient, where the lower (higher) anisotropy portions are now toward the bottom (top) of the film because of the Cu compositional gradient. However, after annealing at 500 degrees C, a single rapid reversal is found, indicating the formation of a uniform hard film. In this case, PNR demonstrates a more uniform magnetic depth profile that is consistent with a uniform reference sample, suggesting significant interdiffusion of the Cu is degrading the compositional and induced anisotropy gradient at this elevated T(A).

Place, publisher, year, edition, pages
2011. Vol. 84, no 5, 054434- p.
Keyword [en]
exchange-spring magnet, cu
National Category
Condensed Matter Physics
URN: urn:nbn:se:kth:diva-39046DOI: 10.1103/PhysRevB.84.054434ISI: 000293729000006ScopusID: 2-s2.0-80052278327OAI: diva2:439312
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Available from: 2011-09-07 Created: 2011-09-07 Last updated: 2011-09-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Fang, YeyuZha, ChaolinBonanni, ValentinaNogues, JosepÅkerman, Johan
By organisation
Material Physics, MFMicroelectronics and Applied Physics, MAPMaterial Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 31 hits
ReferencesLink to record
Permanent link

Direct link