Change search
ReferencesLink to record
Permanent link

Direct link
Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy.
Show others and affiliations
2007 (English)In: Calphad, ISSN 0364-5916, E-ISSN 1873-2984, Vol. 31, no 1, 53-74 p.Article in journal (Refereed) Published
Abstract [en]

Complex equilibria and phase transformations involving diffusion can now be calculated quickly and efficiently. Detailed examples are given for cases which involve varying degrees of non-equilibrium and therefore time-dependence. Despite very good agreement between such calculations and experimental results, many potential end-users are still not convinced that such techniques could be usefully applied to their own specific problems. Friendly graphic interface versions of calculating software are now generally available, so the authors conclude that the most likely source of the reluctance to use such tools lies in the formulation of relevant questions and the interpretation of the results. Although the potential impact of such tools was foreseen many years ago [M. Hillert, Calculation of phase equilibria, in: Conference on Phase Transformations, 1968], few changes in the relevant teaching curricula have taken into account the availability and power of such techniques. This paper has therefore been designed not only as a collection of interesting problems, but also highlights the critical steps needed to achieve a solution. Each example includes a presentation of the "real" problem, any simplifications that are needed for its solution, the adopted thermodynamic formulation, and a critical evaluation of the results. The availability of such examples should facilitate changes in subject matter that will both make it easier for the next generation of students to use these tools, and at the same time reduce the time and effort currently needed to solve such problems by less efficient methods. The first set of detailed examples includes the deoxidation of steel by aluminum; heat balance calculations associated with ladle additions to steel; the determination of conditions that avoid undesirable inclusions; the role of methane in sintering atmospheres; interface control during the physical vapour deposition of cemented carbide; oxidation of gamma-TiAl materials; and simulation of the thermolysis of metallorganic precursors for Si-C-N ceramics and interface reaction of yttrium silicates with SiC-coated C/C-SiC composites for heat shield applications. A second set of examples, more dependent on competitive nucleation and growth, includes segregation and carburization in multicomponent steels and features a series of sophisticated simulatons using DICTRA software. Interfacial and strain energies become increasingly important in defining phase nucleation and morphology in such problems, but relatively little information is available compared to free energy and diffusion databases. The final section therefore demonstrates how computational thermodynamics, semi-empirical atomistic approaches and first-principles calculations are being used to aid filling this gap in our knowledge. (c) 2006 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2007. Vol. 31, no 1, 53-74 p.
Keyword [en]
Carburizing, Computational methods, Computer software, Free energy, Graphical user interfaces, Inclusions, Nucleation, Phase transitions, Physical vapor deposition, Thermodynamics
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-39420DOI: 10.1016/j.calphad.2006.02.006ISI: 000244242100005ScopusID: 2-s2.0-33846500927OAI: diva2:440487
Conference: Ringberg Workshop on Thermodynamic Modeling and First-Principles Calculations. Schloss Ringberg, GERMANY. MAR 06-12, 2005Available from: 2011-09-13 Created: 2011-09-09 Last updated: 2011-09-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ågren, John
By organisation
Physical Metallurgy
In the same journal
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 75 hits
ReferencesLink to record
Permanent link

Direct link