Change search
ReferencesLink to record
Permanent link

Direct link
Scale-Space Theory in Computer Vision
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.ORCID iD: 0000-0002-9081-2170
1994 (English)Book (Other academic)
Abstract [en]

A basic problem when deriving information from measured data, such as images, originates from the fact that objects in the world, and hence image structures, exist as meaningful entities only over certain ranges of scale. "Scale-Space Theory in Computer Vision" describes a formal theory for representing the notion of scale in image data, and shows how this theory applies to essential problems in computer vision such as computation of image features and cues to surface shape. The subjects range from the mathematical foundation to practical computational techniques. The power of the methodology is illustrated by a rich set of examples.

This book is the first monograph on scale-space theory. It is intended as an introduction, reference, and inspiration for researchers, students, and system designers in computer vision as well as related fields such as image processing, photogrammetry, medical image analysis, and signal processing in general.

The presentation starts with a philosophical discussion about computer vision in general. The aim is to put the scope of the book into its wider context, and to emphasize why the notion of scaleis crucial when dealing with measured signals, such as image data. An overview of different approaches to multi-scale representation is presented, and a number special properties of scale-space are pointed out.

Then, it is shown how a mathematical theory can be formulated for describing image structures at different scales. By starting from a set of axioms imposed on the first stages of processing, it is possible to derive a set of canonical operators, which turn out to be derivatives of Gaussian kernels at different scales.

The problem of applying this theory computationally is extensively treated. A scale-space theory is formulated for discrete signals, and it demonstrated how this representation can be used as a basis for expressing a large number of visual operations. Examples are smoothed derivatives in general, as well as different types of detectors for image features, such as edges, blobs, and junctions. In fact, the resulting scheme for feature detection induced by the presented theory is very simple, both conceptually and in terms of practical implementations.

Typically, an object contains structures at many different scales, but locally it is not unusual that some of these "stand out" and seem to be more significant than others. A problem that we give special attention to concerns how to find such locally stable scales, or rather how to generate hypotheses about interesting structures for further processing. It is shown how the scale-space theory, based on a representation called the scale-space primal sketch, allows us to extract regions of interest from an image without prior information about what the image can be expected to contain. Such regions, combined with knowledge about the scales at which they occur constitute qualitative information, which can be used for guiding and simplifying other low-level processes.

Experiments on different types of real and synthetic images demonstrate how the suggested approach can be used for different visual tasks, such as image segmentation, edge detection, junction detection, and focus-of-attention. This work is complemented by a mathematical treatment showing how the behaviour of different types of image structures in scale-space can be analysed theoretically.

It is also demonstrated how the suggested scale-space framework can be used for computing direct cues to three-dimensional surface structure, using in principle only the same types of visual front-end operations that underlie the computation of image features.

Although the treatment is concerned with the analysis of visual data, the general notion of scale-space representation is of much wider generality and arises in several contexts where measured data are to be analyzed and interpreted automatically.

Place, publisher, year, edition, pages
Kluwer Academic Publishers, 1994. , 435 p.
Keyword [en]
scale, scale-space, feature detection, blob detection, corner detection, edge detection, texture, affine transformation, affine shape adaptation, scale selection, blob events. Gaussian kernel, smoothing, diffusion, computer vision, image processing
National Category
Computer and Information Science Computer Vision and Robotics (Autonomous Systems) Mathematics
URN: urn:nbn:se:kth:diva-39922ISBN: 0-7923-9418-6OAI: diva2:440615

QC 20110913

Available from: 2013-04-19 Created: 2011-09-13 Last updated: 2013-04-19Bibliographically approved

Open Access in DiVA

Foreward, Preface, Chapter 1 and Bibliography(553 kB)4338 downloads
File information
File name FULLTEXT01.pdfFile size 553 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

At author's home page

Search in DiVA

By author/editor
Lindeberg, Tony
By organisation
Computational Biology, CB
Computer and Information ScienceComputer Vision and Robotics (Autonomous Systems)Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 4342 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 590 hits
ReferencesLink to record
Permanent link

Direct link