Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical study of the external heavy atom effect on phosphorescence of free-base porphin molecule
KTH, Superseded Departments, Biotechnology.
2004 (English)In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 60, no 13, 3213-3224 p.Article in journal (Refereed) Published
Abstract [en]

The radiative lifetime of phosphorescence of free-base porphin (H2P) molecule and its complexes with noble-gas atoms are calculated by time-dependent density functions theory (TD DFT) with quadratic response functions for account of spin-orbit coupling and electric dipole activity. The complexes with Ne, Ar, Kr, and Xe are used to simulate the external heavy atom (EHA) effect on phosphorescence of the H2P molecule in the corresponding noble gas matrices. The 133LYP functional and small basis set (3-21G) are used throughout the study and comparison of all complexes but other basis sets are also utilized to support the chosen approach. A slow radiative rate constant of free-base porphin phosphorescence (about 10(-3) S-1) is obtained with all basis sets being in the order of magnitude agreement with experimental estimations. A strong enhancement of the H2P phosphorescence rate (by 360 times) is calculated for Xe complex; while for Ne, Ar, and Kr complexes, the enhancement is equal to 1.1, 1.3, and 10.3 times, respectively. In these complexes, the noble gas atom is disposed at 3.6 Angstrom above the center of the porphin ring. In spite of shortcomings of the chosen simple model, the TD DFT calculations explain the most important features of the EHA effect on phosphorescence of free-base porphin. Calculations of the hypertine coupling tensors for all magnetic nuclei in the lowest triplet state of H2P molecule and its complexes with noble-gas atoms indicate an appreciable penetration of the spin density to the EHA region. This can be connected with the enhancement of spin-orbit coupling in the H2P molecule.

Place, publisher, year, edition, pages
2004. Vol. 60, no 13, 3213-3224 p.
Keyword [en]
phosphorescence, free-base porphin, time-dependent density function theory, quadratic response function, external heavy atom effect
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-40321DOI: 10.1016/j.saa.2004.03.005ISI: 000224847900038Scopus ID: 2-s2.0-5444252720OAI: oai:DiVA.org:kth-40321DiVA: diva2:441250
Note
QC 20110915Available from: 2011-09-15 Created: 2011-09-14 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Minaev, Boris
By organisation
Biotechnology
In the same journal
Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf