Change search
ReferencesLink to record
Permanent link

Direct link
Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2: 342-pep2
2008 (English)In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 23, no 4, 435-42 p.Article in journal (Refereed) Published
Abstract [en]

Affibody molecules are a novel class of targeting proteins, demonstrating promising results in the molecular imaging of tumor markers. The aim of this study was to investigate the cellular processing of Affibody molecules bound to human epidermal growth-factor-receptor type 2 (HER2). Cellular processing of the synthetic Affibody molecule, DOTA-Z(HER2:342-pep2) (K(D) = 65 (p)M) labeled with indium-111, was studied both during continuous and interrupted incubation with HER2-expressing cell lines (SKOV-3, SKBR-3, and BT474). The internalized and membrane bound fractions of Affibody molecule were discriminated by treatment with 4 M of urea solution in 0.2 M of glycine buffer (pH 2.0). Incubation media collected after an interrupted incubation was analyzed for the presence of radiocatabolites. Continuous incubation of tumor cells with (111)In-DOTA-Z(HER2:342-pep2) led to the saturation of HER2 and slow internalization. Sixty (60)- to 80% of the radioactivity remained cell associated 24 hours after interrupted incubation. The rate of Affibody molecule internalization was the same after interrupted incubation, as in the continuous incubation experiments. Internalization of (111) In-DOTA-Z(HER2:342-pep2) was relatively slow. A high level of cellular retention of the tracer was provided by strong binding to cell-surface receptors. These data suggest that good tumor targeting with anti-HER Affibody molecules may be obtained by using short-lived, nonresidualizing labels.

Place, publisher, year, edition, pages
2008. Vol. 23, no 4, 435-42 p.
Keyword [en]
cellular processing, HER2, affibody molecule, indium-111, internalization
National Category
Medical Biotechnology
URN: urn:nbn:se:kth:diva-40854DOI: 10.1089/cbr.2008.0464ISI: 000259167300005PubMedID: 18771347OAI: diva2:442490
QC 20110921Available from: 2011-09-21 Created: 2011-09-21 Last updated: 2011-09-22Bibliographically approved
In thesis
1. Design and Evaluation of Radiolabeled Affibody Tracers for Imaging of HER2-expressing Tumors
Open this publication in new window or tab >>Design and Evaluation of Radiolabeled Affibody Tracers for Imaging of HER2-expressing Tumors
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The growing understanding of tumor biology and the identification of tumor specificgenetic and molecular alterations, such as the overexpression of human epidermal growthfactor receptor 2 (HER2), opens up for personalization of patient management using targeted therapies. However, this puts stringent demands on the diagnostic tools usedto identify patients that are likely to respond to a particular treatment. Radionuclide molecular imaging is a promising non-invasive method to visualize and characterize the expression of such targets. This thesis, based on five papers, is focused on the development of radiolabeled Affibody molecules for imaging of HER2-expression in malignant tumors. Affibody molecules, which represent a rather novel class of affinity proteins developed by combinatorial protein engineering of the protein A derived Z-domain, display manyfeatures that make them promising tracers for molecular imaging applications. The aim of the work presented here was to further develop the tracer format for improved in vivo properties and flexibility in the choice of radionuclide.

In paper I, the development of an assay that enables quantitative studies of the internalization rate and cellular processing of high affinity Affibody molecules is described. The assay was applied to a HER2-binding Affibody variant that was efficiently retained by HER2-expressing cells, although characterized by a slow internalization rate. This may have implications for the choice of label for Affibody molecules since high affinity to the target may be equally, or more, important for good imaging quality than residualizing properties of the radiolabel. In paper II, a HER2-binding Affibody molecule and the monoclonal antibody trastuzumab were labeled with positron emitting 124I, for a head-to-head in vivocomparison of the two tracer formats. The effects of tracer size and presence of an Fc region on the biodistribution profile were investigated. In paper III, a HER2-binding Affibody molecule was site-specifically labeled with radiocobalt and evaluated in vitro and in vivo.A head-to-head in vivo comparison with the well-studied 111In-labeled counterpart was performed, revealing promising potential for the cobalt-labeled molecule as a PET-tracerfor visualization of HER2. Paper IV describes the in vitro and in vivo evaluation of a panel of Affibody molecules with different C-terminal peptide-based chelators for the coordination of 99mTc. Even small changes in the C-terminal sequence had appreciable impact on the biodistribution of the Affibody molecules and by optimizing the design of the chelator, the kidney uptake of 99mTc could be significantly reduced. Finally, in paper V we describe the development of a HER2-targeting Affibody variant equipped with a Sel-tag for site-specific labeling with the short-lived positron emitter 11C. This novel Affibody tracer could be used to image HER2-expressing tumors in vivo within one hour after injection.

Taken together, Affibody molecules show great promise as targeting tracers for radionuclide molecular imaging of HER2. Careful design and optimization of the tracer protein is important and can be used to improve the biodistribution and targeting properties of Affibody molecules.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 79 p.
Trita-BIO-Report, ISSN 1654-2312 ; 2011:21
Affibody molecule, radionuclide molecular imaging, HER2, radiotracer, SPECT, PET, biodistribution, protein engineering, radiolabeling
National Category
Medical Biotechnology Biochemistry and Molecular Biology
urn:nbn:se:kth:diva-40890 (URN)978-91-7501-092-2 (ISBN)
Public defence
2011-10-21, FD5, AlbaNova University center, Stockholm, 10:00 (English)
QC 20110922Available from: 2011-09-22 Created: 2011-09-22 Last updated: 2011-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Wållberg, Helena
In the same journal
Cancer Biotherapy and Radiopharmaceuticals
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link