Change search
ReferencesLink to record
Permanent link

Direct link
Uncertainty estimation by Monte Carlo simulation applied to life cycle inventory of cordless phones and microscale metallization processes
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
2004 (English)In: IEEE transactions on electronics packaging manufacturing (Print), ISSN 1521-334X, E-ISSN 1558-0822, Vol. 27, no 4, 233-245 p.Article in journal (Refereed) Published
Abstract [en]

This paper focuses on uncertainty analysis, that is, how the input data uncertainty affects the output data uncertainty in small but realistic product systems. The motivation for the study is to apply the Monte Carlo simulation for uncertainty estimation in life cycle inventory and environmental assessment of microelectronics applications. The present paper addresses the question whether there is an environmental advantage of using digital enhanced cordless telecommunications (DECT) phones instead of global system for mobile (GSM) phones in offices. This paper also addresses the environmental compatibility of electrochemical pattern replication (ECPR) compared to classical photolithography-based microscale metallization (CL) for pattern transfer. Both environmental assessments in this paper consider electricity consumption and CO2 emissions and the projects undertaken are two comparative studies of DECT phone/GSM phone and ECPR/CL, respectively. The research method used was probabilistic uncertainty modeling with a limited number of inventory parameters used in the MATLAB tool. For the DECT/GSM study the results reflects the longer DECT technical life which is an environmental advantage. For the electrochemical pattern replication (ECPR)/classical photolithography based microscale metallization (CL) study the results reflects the fewer number of process steps and the lower electricity consumption needed by the ECPR to reach the functional unit. The difference in results is large enough to be able to draw conclusions, as the processes, having the highest electricity consumption within the system boundaries have been determined. Based on an earlier work, a straightforward method to include uncertainty for input life cycle inventory data is used to quantify the influence of realistic errors for input data in two microelectronic applications. The conclusion is that the ECPR technology is more electricity efficient than CL in producing one layer of copper on a silicon wafer having a diameter of 20.32 cm. Furthermore, the longer technical life of a cordless DECT phone is reflected in an electricity/CO2 comparison with a GSM phone, if office use is considered. Reasonable uncertainty intervals, used for the input life cycle inventory data for the studied DECT/GSM and ECPR/CL system, does affect the outcome of calculation of emission of CO2, but not to the degree that conclusions are not valid. Different uncertainty intervals and probability distributions could apply for different types of data and the interrelated input data dependencies should be investigated. Today there exist very few life cycle inventory (LCI) data with the range of uncertainty for input and output elements. It must be emphasized that the upcoming LCI databases should have standard deviation characterized LCI data just as the Swiss ecoinvent LCI database. More inventory parameters and probability distributions characteristic for microsystems could be included and error analysis should be applied to future life inventory methodology, especially for future packaging concepts such as system-in-a-package and system-on-a-chip comparisons.

Place, publisher, year, edition, pages
2004. Vol. 27, no 4, 233-245 p.
Keyword [en]
classical photolithography metallization, CO2, digital enhanced cordless telecommunications (DECT), electrochemical pattern replication (ECPR), global system for mobile (GSM), life cycle inventory, Monte Carlo simulation, uncertainty analysis
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-40520DOI: 10.1109/TEPM.2004.843163ISI: 000226909600004ScopusID: 2-s2.0-14644394271OAI: diva2:442613

QC 20110922. 1st International IEEE Conference on Asian Green Electronics. Hong Kong, PEOPLES R CHINA. 2004

Available from: 2011-09-22 Created: 2011-09-16 Last updated: 2014-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Möller, Patrik
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
IEEE transactions on electronics packaging manufacturing (Print)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link