Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Ru complexes containing pyridine-dicarboxylate ligand: electronic effect on their catalytic activity toward water oxidation
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0003-1662-5817
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0002-4521-2870
2011 (English)In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 155, 267-275 p.Article in journal (Refereed) Published
Abstract [en]

Two series of mononuclear ruthenium complexes [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid; L = 4-methoxypyridine, 1; pyridine, 2; pyrazine, 3) and [Ru(pdc)L-2(dmso)] (dmso = dimethyl sulfoxide; L = 4-methoxypyridine, 4; pyridine, 5) were synthesized and spectroscopically characterized. Their catalytic activity toward water oxidation has been examined using Ce-IV (Ce(NH4)(2)(NO3)(6)) as the chemical oxidant under acidic conditions. Complexes 1, 2 and 3 are capable of catalyzing Ce-IV-driven water oxidation while 4 and 5 are not active. Electronic effects on their catalytic activity were illustrated: electron donating groups increase the catalytic activity.

Place, publisher, year, edition, pages
2011. Vol. 155, 267-275 p.
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-40905DOI: 10.1039/c1fd00101aISI: 000299793100018Scopus ID: 2-s2.0-84857067133OAI: oai:DiVA.org:kth-40905DiVA: diva2:442864
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note
Original title: The Ru-pdc Complexes: Electronic Effect on Their Catalytic Activity toward CeIV-Driven Water Oxidation QC 20120227Available from: 2011-09-22 Created: 2011-09-22 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Artificial Water Splitting: Ruthenium Complexes for Water Oxidation
Open this publication in new window or tab >>Artificial Water Splitting: Ruthenium Complexes for Water Oxidation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns the development and study of Ru-based water oxidation catalysts (WOCs) which are the essential components for solar energy conversion to fuels. The first chapter gives a general introduction about the field of homogenous water oxidation catalysis, including the catalytic mechanisms and the catalytic activities of some selected WOCs as well as the concerns of catalyst design. The second chapter describes a family of mononuclear Ru complexes [Ru(pdc)L3] (H2pdc = 2,6-pyridinedicarboxylic acid; L = pyridyl ligands) towards water oxidation. The negatively charged pdc2 dramatically lowers the oxidation potentials of Ru complexes, accelerates the ligand exchange process and enhances the catalytic activity towards water oxidation. A Ru aqua species [Ru(pdc)L2(OH2)] was proposed as the real catalyst. The third chapter describes the analogues of [Ru(terpy)L3]2+ (terpy = 2,2′:6′,2′′-terpyridine). Through the structural tailor, the ligand effect on the electrochemical and catalytic properties of these Ru complexes was studied. Mechanistic studies suggested that these Ru-N6 complexes were pre-catalysts and the Ru-aqua species were the real WOCs. The forth chapter describes a family of fast WOCs [Ru(bda)L2] (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid). Catalytic mechanisms were thoroughly investigated by electrochemical, kinetic and theoretical studies. The main contributions of this work to the field of water oxidation are (i) the recorded high reaction rate of 469 s−1; (ii) the involvement of seven-coordinate Ru species in the catalytic cycles; (iii) the O-O bond formation pathway via direct coupling of two Ru=O units and (iv) non-covalent effects boosting up the reaction rate. The fifth chapter is about visible light-driven water oxidation using a three component system including a WOC, a photosensitizer and a sacrificial electron acceptor. Light-driven water oxidation was successfully demonstrated using our Ru-based catalysts.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 80 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2011:48
Keyword
water oxidation, ruthenium, electrochemistry, DFT calculation, photoelectrochemistry, negatively charged ligand, catalyst
National Category
Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-40848 (URN)978-91-7501-083-0 (ISBN)
Public defence
2011-10-07, E3, Osquars backe 14, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20110922Available from: 2011-09-22 Created: 2011-09-21 Last updated: 2011-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Duan, LeleSun, Licheng

Search in DiVA

By author/editor
An, JunxueDuan, LeleSun, Licheng
By organisation
Organic Chemistry
In the same journal
Faraday discussions (Online)
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 414 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf