Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Stochastic Control Approach to Manage Operational Risk in Power Systems
KTH, School of Electrical Engineering (EES), Electric Power Systems.
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0002-8189-2420
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this article the novel method Operational Risk Managing Optimal Power Flow (ORMOPF), for minimizing the expected cost of power system operation, is proposed. In contrast to previous research in the area, the proposed method does not use a security criterion. Instead the expected cost of operation includes expected costs of system failures.

This will lead to more flexible operating limits, giving a more adequate balance between risk and economic benefit of transmission.

The method assumes a set of observable system variables such as transfers through specific transmission corridors, system frequency, or distance to a bifurcation surface. Then impulse control is applied to find an optimal strategy for activation of tertiary reserves, based on the values of the observables.

Keyword [en]
Net transmission capacity, OPF, ORMOPF, power system security, SCOPF, tertiary reserves
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-41984OAI: oai:DiVA.org:kth-41984DiVA: diva2:445738
Note
QS 2011Available from: 2011-10-04 Created: 2011-10-04 Last updated: 2011-10-10Bibliographically approved
In thesis
1. A Stochastic Control Approach to Include Transfer Limits in Power System Operation
Open this publication in new window or tab >>A Stochastic Control Approach to Include Transfer Limits in Power System Operation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main function of the power grid is to transfer electric energy from generating facilities to consumers. To have a reliable and economical supply of electricity, large amounts of electric energy often have to be transferred over long distances.

The transmission system has a limited capacity to transfer electric power, called the transfer capacity. Severe system failures may follow if the transfer capacity is reached during operation.

Due to uncertainties, such as the random failure of system components, the transfer capacity for the near future is not readily determinable. Also, due to market principles, and reaction times and ramp rates of production facilities, power flow control is not fully flexible. Therefore, a transfer limit, which is below the transfer capacity, is decided and preventative actions are taken when the transfer reaches this limit.

In this thesis an approach to deciding an optimal strategy for power flow control through activation of regulating bids on the regulating power market is outlined. This approach leads to an optimal definition of transfer limits as the boundary between the domain where no bid should be activated and the domains where bids should be activated. The approach is based on weighing the expected cost from system failures against the production cost. This leads to a stochastic impulse control problem for a Markov process in continuous time.

The proposed method is a novel approach to decide transfer limits in power system operation. The method is tested in a case study on the IEEE 39 bus system, that shows promising results.

In addition to deciding optimal transfer limits, it is also investigated how the transfer capacity can be enhanced by controlling components in the power system to increase stability.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 67 p.
Series
Trita-EE, ISSN 1653-5146 ; 2011:070
Keyword
Frequency control, power regulating market, power system operation, power system security, stochastic impulse control, transfer capacity, transfer limit
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-41986 (URN)978-91-7501-132-5 (ISBN)
Public defence
2011-11-07, F3, Lindstedtsv 26, entréplan, KTH, S, 10:00 (English)
Opponent
Supervisors
Note
QC 20111010Available from: 2011-10-10 Created: 2011-10-04 Last updated: 2011-10-10Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Söder, Lennart

Search in DiVA

By author/editor
Perninge, MagnusSöder, Lennart
By organisation
Electric Power Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf