Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Water, Sewage and Waste technology.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
2011 (English)In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 64, no 5, 1009-1015 p.Article in journal (Refereed) Published
Abstract [en]

A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m(3)), supplied with reject water from the Himmerfjarden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O(2) m(-3). At a DO concentration of 4 g O(2) m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O(2) m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O(2) m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

Place, publisher, year, edition, pages
2011. Vol. 64, no 5, 1009-1015 p.
Keyword [en]
Anammox, biofilm, deammonification, Kaldnes, nitrogen removal, reject water
National Category
Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-42376DOI: 10.2166/wst.2011.449ISI: 000295032600001Scopus ID: 2-s2.0-80052708339OAI: oai:DiVA.org:kth-42376DiVA: diva2:446921
Note
QC 20111010Available from: 2011-10-10 Created: 2011-10-10 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cema, GrzegorzPlaza, ElzbietaTrela, Jozef
By organisation
Land and Water Resources Engineering (moved 20130630)Water, Sewage and Waste technology
In the same journal
Water Science and Technology
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 184 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf