Change search
ReferencesLink to record
Permanent link

Direct link
Processing and on-wafer measurements of ferroelectric interdigitated tunable microwave capacitors
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0001-8774-9302
2004 (English)In: Integration Of Advanced Micro-And Nanoelectronic Devices-Critical Issues And Solutions / [ed] Morais, J; Kumar, D; Houssa, M; Singh, RK; Landheer, D; Ramesh, R; Wallace, RM; Guha, S; Koinuma, H, 2004, Vol. 811, 307-312 p.Conference paper (Refereed)
Abstract [en]

Na0.5K0.5NbO3 (NKN) and Pb(Zr0.53Ti0.47)O-3 (PZT) films have been grown by rf-magnetron sputtering and pulsed laser deposition techniques, correspondingly, on sapphire (Al2O3-0112, r-cut), YAlO3 + 1% Nd (Nd:YAlPO3-001), and quartz (Y+36degrees-cut) single crystal substrates. Interdigital capacitor (IDC) of coplanar waveguide (CPW) structures were defined by a standard lift off technique in a Au(0.5mum)/Cr(10nm) electrode electron beam evaporated on ferroelectric film surface. IDCs consisted of five pairs of fingers separated by 2 and 4 mum gap. On-wafer microwave characterization was performed using a workbench equipped with a coplanar probe station (Cascade Microtech) with G-S-G (Ground-Signal-Ground) Picoprobe, a network analyzer (Agilent Technologies E8364A) operating in 45 MHz to 40 GHz range and programmable power supply for de DUT (Device Under Test) biasing. Assumed equivalent circuit for the IDC/CPW structure contains planar capacitor under test C, the coplanar line with a complex impedance sigma and a parasitic capacitance C, between the signal and ground lines. The de-embedding technique has been employed to determine all six complex parameters C, sigma and C-p from S-parameter measurements performed for three different device structures: device, open and thru. NKN film interdigital capacitors on sapphire show superior performance in this microwave range: the frequency dispersion was as low as 18%, voltage tunability = 1 - C(40V)/C(0) (40 V, 200 kV/cm) about 14%, loss tangent similar to0.11, K-factor = tunability/tandelta from 131% @ 10 GHz: to 56% @ 40 GHz. The reliability of the de-embedding procedure is clearly proved by analysis of the frequency dependences of the parasitic capacitance and loss tangent as well as impedance of the coplanar line. Within the accuracy of experimental data and de-embedding calculations these values appear to be voltage independent: C-p similar to 70 fF, tan delta(p) changes from 0.07 @ 10 GHz to 0.15 @ 40 GHz; real and imaginary part of interconnect impedance increases with frequency from 0.16 Omega @ 10 GHz to 0.36 Omega @ 40 GHz and from 1.6 Omega @ 10 GHz to 5.84 Omega @ 40 GHz respectively.

Place, publisher, year, edition, pages
2004. Vol. 811, 307-312 p.
, Materials Research Society Symposium Proceedings, ISSN 0272-9172 ; 811
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-43819ISI: 000224411400045ScopusID: 2-s2.0-12744258069ISBN: 1-55899-761-XOAI: diva2:448891
Symposium on Integration of Advanced Micro-and Nanoelectronic Devices held at the 2004 MRS Spring Meeting Location: San Francisco, CA Date: APR 13-16, 2004
QC 20111018Available from: 2011-10-18 Created: 2011-10-18 Last updated: 2011-10-31Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Grishin, AlexanderKim, Joo-HyungKhartsev, Sergey
By organisation
Microelectronics and Information Technology, IMIT
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link