Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor
Show others and affiliations
2004 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 11, no 5, 2668-2678 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the experimental characterization of pedestal parameters, edge localized mode (ELM) energy, and particle losses from the main plasma and the corresponding ELM energy fluxes on plasma facing components for a series of dedicated experiments in the Joint European Torus (JET). From these experiments, it is demonstrated that the simple hypothesis relating the peeling-ballooning linear instability to ELM energy losses is not valid. Contrary to previous observations at lower triangularities, small energy losses at low collisionality have been obtained in regimes at high plasma triangularity and q(95)similar to4.5, indicating that the edge plasma magnetohydrodynamic stability is linked with the transport mechanisms that lead to the loss of energy by conduction during type I ELMs. Measurements of the ELM energy fluxes on the divertor target show that their time scale is linked to the ion transport along the field and the formation of a high energy sheath, in agreement with kinetic modeling of ELMs. Higher density ELMs, of a convective nature, lead to overall much longer time scales for the ELM energy flux, with more than 80% of the ELM energy flux arriving after the surface divertor temperature has reached its maximum value. On the contrary, for low density ELMs, of a conductive nature, up to 40% of the energy flux arrives at the divertor target before the surface divertor temperature has reached its maximum value. These large and more conductive ELMs may lead to up to similar to50% of the ELM energy reaching the main wall plasma facing components instead of the divertor target. The extrapolation to the International Thermonuclear Experimental Reactor of the obtained results is described and the main uncertainties discussed.

Place, publisher, year, edition, pages
2004. Vol. 11, no 5, 2668-2678 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-43765DOI: 10.1063/1.1707025ISI: 000221122600110Scopus ID: 2-s2.0-2942622358OAI: oai:DiVA.org:kth-43765DiVA: diva2:450226
Note
QC 20111020Available from: 2011-10-20 Created: 2011-10-18 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Corre, Yann
By organisation
Physics
In the same journal
Physics of Plasmas
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 166 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf