Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications
KTH, School of Electrical Engineering (EES), Signal Processing.ORCID iD: 0000-0001-6630-243X
2005 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 32, no 12, p. 3801-3809Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2005. Vol. 32, no 12, p. 3801-3809
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-44467DOI: 10.1118/1.2134958ISI: 000234643700032OAI: oai:DiVA.org:kth-44467DiVA, id: diva2:450486
Note
QC 20111104Available from: 2011-10-20 Created: 2011-10-20 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Jaldén, Joakim

Search in DiVA

By author/editor
Jaldén, Joakim
By organisation
Signal Processing
In the same journal
Medical physics (Lancaster)
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf