Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Equality of pressures for rational functions
KTH, Superseded Departments, Mathematics.
2004 (English)In: Ergodic Theory and Dynamical Systems, ISSN 0143-3857, E-ISSN 1469-4417, Vol. 24, 891-914 p.Article in journal (Refereed) Published
Abstract [en]

We prove that for all rational functions f on the Riemann sphere and potential -t ln \f'\ t greater than or equal to 0 all the notions of pressure introduced in Przytycki (Proc. Amer Math. Soc. 351(5) (1999), 2081-2099) coincide. In particular, we get a new simple proof of the equality between the hyperbolic Hausdorff dimension and the minimal exponent of conformal measure on a Julia set. We prove that these pressures are equal to the pressure defined with the use of periodic orbits under an assumption that there are not many periodic orbits with Lyapunov exponent close to 1 moving close together, in particular under the Topological Collet-Eckmann condition. In Appendix A, we discuss the case t < 0.

Place, publisher, year, edition, pages
2004. Vol. 24, 891-914 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-44839DOI: 10.1017/S0143385703000385ISI: 000222296200013Scopus ID: 2-s2.0-2942704291OAI: oai:DiVA.org:kth-44839DiVA: diva2:451714
Note
QC 20111026Available from: 2011-10-26 Created: 2011-10-25 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Smirnov, Stanislav
By organisation
Mathematics
In the same journal
Ergodic Theory and Dynamical Systems
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf