Change search
ReferencesLink to record
Permanent link

Direct link
Aggravated hypoxia during breath-holds after prolonged exercise
Swedish Defence Research Agency.
2005 (English)In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 93, no 5-6, 701-707 p.Article in journal (Refereed) Published
Abstract [en]

Hyperventilation prior to breath-hold diving increases the risk of syncope as a result of hypoxia. Recently, a number of cases of near-drownings in which the swimmers did not hyperventilate before breath-hold diving have come to our attention. These individuals had engaged in prolonged exercise prior to breath-hold diving and it is known that such exercise enhances lipid metabolism relative to carbohydrate metabolism, resulting in a lower production of CO(2) per amount of O(2 )consumed. Therefore, our hypothesis was that an exercise-induced increase in lipid metabolism and the associated reduction in the amount of CO(2) produced would cause the urge to breathe to develop at a lower P O(2), thereby increasing the risk of syncope due to hypoxia. Eight experienced breath-hold divers performed 5 or 6 breath-holds at rest in the supine position and then 5 or 6 additional breath-holds during intermittent light ergometer exercise with simultaneous apnoea (dynamic apnoea, DA) on two different days: control (C) and post prolonged sub-maximal exercise (PPE), when the breath-holds were performed 30 min after 2 h of sub-maximal exercise. After C and before the prolonged submaximal exercise subjects were put on a carbohydrate-free diet for 18 h to start the depletion of glycogen. The respiratory exchange ratio ( RER) and end-tidal P CO(2), P O(2), and SaO(2) values were determined and the data were presented as means (SD). The RER prior to breath-holding under control conditions was 0.83 (0.09), whereas the corresponding value after exercise was 0.70 (0.05) ( P <0.01). When the three apnoeas of the longest duration for each subject were analysed, the average duration of the dynamic apnoeas was 96 (14) s under control conditions and 96 (17) s following exercise. Both P O(2) and P CO(2) were higher during the control dynamic apnoeas than after PPE [PO(2) 6.9 (1.0) kPa vs 6.2 (1.2) kPa, P <0.01; P CO(2) 7.8 (0.5) kPa vs 6.7 (0.4) kPa, P <0.001; ANOVA testing]. A similar pattern was observed after breath-holding under resting conditions, i.e., a lower end-tidal P O(2) and P CO(2) after exercise (PPE) compared to control conditions. Our findings demonstrate that under the conditions of a relatively low RER following prolonged exercise, breath-holding is terminated at a lower P O(2) and a lower P CO(2) than under normal conditions. This suggests that elevated lipid metabolism may constitute a risk factor in connection with breath-holding during swimming and diving.

Place, publisher, year, edition, pages
2005. Vol. 93, no 5-6, 701-707 p.
Keyword [en]
Apnoea, Drowning, Hypoxemia, Metabolism
National Category
URN: urn:nbn:se:kth:diva-45331DOI: 10.1007/s00421-004-1242-yISI: 000228525100026PubMedID: 15778900OAI: diva2:452338
QC 20111116Available from: 2011-10-28 Created: 2011-10-28 Last updated: 2011-11-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gennser, Mikael
In the same journal
European Journal of Applied Physiology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link