Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The amount of discrete spectrum of a perturbed periodic Schrodinger operator inside a fixed interval (lambda(1),lambda(2))
KTH, Superseded Departments, Mathematics.
2004 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, no 9, 411-423 p.Article in journal (Refereed) Published
Abstract [en]

Let A be a periodic Schrödinger operator and let V ≥ 0 be a decaying potential. We study the number of the eigenvalues of the operator A(α)=A−α V inside a fixed interval (λ12). We obtain an asymptotic formula for as α → ∞. In this paper we extend the results of Safronov (2001) for a more general class of perturbations.

Place, publisher, year, edition, pages
2004. no 9, 411-423 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-46078ISI: 000220354100001Scopus ID: 2-s2.0-0742288891OAI: oai:DiVA.org:kth-46078DiVA: diva2:453459
Note

QC 20111102

Available from: 2011-11-02 Created: 2011-11-02 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Safronov, Oleg
By organisation
Mathematics
In the same journal
International mathematics research notices
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf