Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering. (KTH-International Groundwater Arsenic Research Group)ORCID iD: 0000-0003-4350-9950
Show others and affiliations
2011 (English)In: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, ISSN 1093-4529, E-ISSN 1532-4117, Vol. 46, no 11, 1297-1310 p.Article in journal (Refereed) Published
Abstract [en]

Use of natural geological materials for arsenic (As) removal is an emerging solution at a household level for poor people in remote rural settlements, especially when the materials are locally available and can be collected by the local population. Their low or zero cost makes these materials very attractive compared with synthetic or commercial materials. Sometimes, this may be the only option to provide safe water to very poor settlements. Their suitability for As removal from water is mainly due to adsorption, co-precipitation and ion exchange processes involving Fe- and Al-rich minerals and clay minerals present in the soils or sediments. In the present study, various clay-rich soils from the Santiago del Estero province (SDE, NW Argentina) and, for comparison, a laterite from the Misiones province have been tested as adsorbents for As in shallow naturally contaminated groundwaters of the Rio Dulce alluvial aquifer in SDE. Batch adsorption experiments showed higher As(V) removal for the Misiones laterite sample (99 %) as compared with the soils from SDE (40-53 %), which can be related to lower contents of water-soluble and oxalate extractable Al and Fe in the last samples. These results suggest the application of the Misiones laterite soil as an alternative for As removal. However, high transportation costs from Misiones to SDE can be an economical restriction for the low-income population of SDE.

Place, publisher, year, edition, pages
2011. Vol. 46, no 11, 1297-1310 p.
Keyword [en]
Groundwater arsenic removal, geogenic arsenic sorbents, sequential extraction
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-46832DOI: 10.1080/10934529.2011.598838ISI: 000295716900016Scopus ID: 2-s2.0-80052499999OAI: oai:DiVA.org:kth-46832DiVA: diva2:454275
Note
QC 20111107Available from: 2011-11-07 Created: 2011-11-07 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Bhattacharya, Prosun

Search in DiVA

By author/editor
Bundschuh, JochenBhattacharya, Prosun
By organisation
Land and Water Resources Engineering
In the same journal
Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf