Change search
ReferencesLink to record
Permanent link

Direct link
The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH(2) (Pseudomonas stutzeri) and OSBH(5) (Bacillus cereus) in an oil-contaminated site
Show others and affiliations
2011 (English)In: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, ISSN 1093-4529, E-ISSN 1532-4117, Vol. 46, no 11, 1239-1246 p.Article in journal (Refereed) Published
Abstract [en]

Microbial reduction of arsenate [As(V)] plays an important role in arsenic (As) mobilization in aqueous environments. In this study, we investigated reduction of arsenate by different bacterial isolates such as OSBH(1) (GU329913), OSBH(2) (GU329914), OSBH(3) (GU329915), OSBH(4) (GU329916) and OSBH(5) (GU329917), isolated from the oil sludge of a sewage treatment plant operated by the China Petroleum Refinery Company in Kaohsiung, southern Taiwan. Bacterial strains of pure culture were identified by 16S rRNA analysis (>= 99 % nucleotide similarity). Morphological and 16S rRNA analysis show that the isolate OSBH(1) is similar to E. coli, OSBH(2) is similar to P. stutzeri, OSBH(3) is similar to P. putida, OSBH(4) is similar to P. aeruginosa, and OSBH(5) is similar to B. Cereus. The As(V) was transformed to As(III) in the presence of isolates OSBH(2) and OSBH(5) by a detoxification process. The potential reduction rates of As(V) were higher in the presence of isolate OSBH(5) compared to the isolate OSBH(2). The microbial growth (cell/mL) of isolate OSBH(5) was significantly higher in culture medium compared to OSBH(2). The bacterial isolates such as OSBH(1), OSBH(3) and OSBH(4) were found to be incapable of transforming the As(V). It is concluded that the activity of the oil-degrading bacterial isolates described in this work contributes to the mobilization of As in the more toxic As(III) form that affects biotic life.

Place, publisher, year, edition, pages
2011. Vol. 46, no 11, 1239-1246 p.
Keyword [en]
Arsenic, oil degrading bacterial isolates, 16SrRNA
National Category
Environmental Sciences
URN: urn:nbn:se:kth:diva-46876DOI: 10.1080/10934529.2011.598802ISI: 000295716900009ScopusID: 2-s2.0-80052498609OAI: diva2:454281
QC 20111107Available from: 2011-11-07 Created: 2011-11-07 Last updated: 2011-11-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bundschuh, Jochen
By organisation
Land and Water Resources Engineering
In the same journal
Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link