Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of two-subband population in Fe-doped AlxGa1-xN/GaN heterostructures by persistent photoconductivity effect
Show others and affiliations
2006 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 74, no 24, 245325- p.Article in journal (Refereed) Published
Abstract [en]

The electronic properties of Fe-doped Al0.31Ga0.69N/GaN heterostructures have been studied by Shubnikov-de Haas measurement. The lowest two subbands of the two-dimensional electron gas in the heterointerface were populated. After the low temperature illumination, the electron density increases from 11.99x10(12) cm(-2) to 13.40x10(12) cm(-2) for the first subband and from 0.66x10(12) cm(-2) to 0.94x10(12) cm(-2) for the second subband. The persistent photoconductivity effect (similar to 13% increase) is mostly attributed to the Fe-related deep-donor level in GaN layer. The second subband starts to populate when the first subband is filled at a density of 9.40x10(12) cm(-2). We obtained the energy separation between the first and second subbands to be 105 meV.

Place, publisher, year, edition, pages
2006. Vol. 74, no 24, 245325- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-47112DOI: 10.1103/PhysRevB.74.245325ISI: 000243195800087Scopus ID: 2-s2.0-33845771340OAI: oai:DiVA.org:kth-47112DiVA: diva2:454740
Note
QC 20111108Available from: 2011-11-08 Created: 2011-11-07 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lourdudoss, Sebastian

Search in DiVA

By author/editor
Aggerstam, ThomasLourdudoss, Sebastian
By organisation
Electrum Laboratory, ELAB
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 64 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf