Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surgery and the spectrum of the Dirac operator
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0002-9184-1467
2002 (English)In: Journal für die Reine und Angewandte Mathematik, ISSN 0075-4102, E-ISSN 1435-5345, Vol. 552, 53-76 p.Article in journal (Refereed) Published
Abstract [en]

We show that for generic Riemannian metrics on a simply-connected closed spin manifold of dimension greater than or equal to5 the dimension of the space of harmonic spinors is not larger than it must be by the index theorem. The same result holds for periodic fundamental groups of odd order. The proof is based on a surgery theorem for the Dirac spectrum which says that if one performs surgery of codimension greater than or equal to3 on a closed Riemannian spin manifold, then the Dirac spectrum changes arbitrarily little provided the metric on the manifold after surgery is chosen properly.

Place, publisher, year, edition, pages
2002. Vol. 552, 53-76 p.
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-47744DOI: 10.1515/crll.2002.093ISI: 000179616800003OAI: oai:DiVA.org:kth-47744DiVA: diva2:456093
Note
QC 20111114Available from: 2011-11-12 Created: 2011-11-12 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://dx.doi.org/10.1515/crll.2002.093

Authority records BETA

Dahl, Mattias

Search in DiVA

By author/editor
Dahl, Mattias
By organisation
Mathematics
In the same journal
Journal für die Reine und Angewandte Mathematik
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf